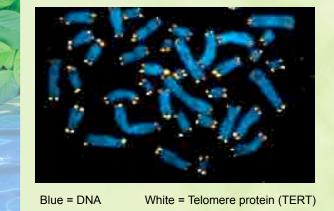
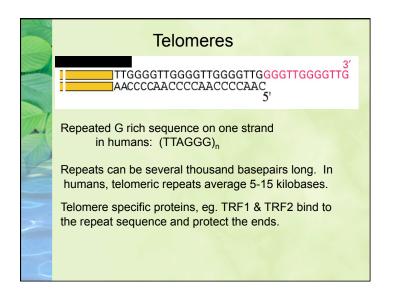

Reading: Handbook of Aging, Ch 9 A&S300-003 Jim Lund

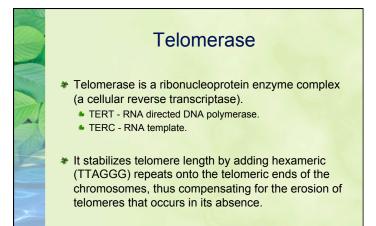





1




# Chromosome Ends are specialized structures called Telomeres

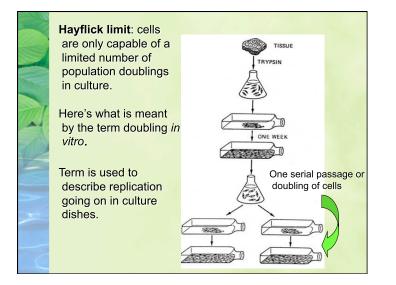




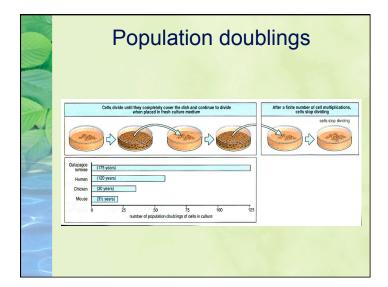

## **Telomere functions**

- Telomeres protect chromosome end from DNA repair pathways, repair leads to chromosomal fusions.
- Maintain length of chromosomes.
- Telomeres associate with the nuclear membrane and maintain nuclear organization.

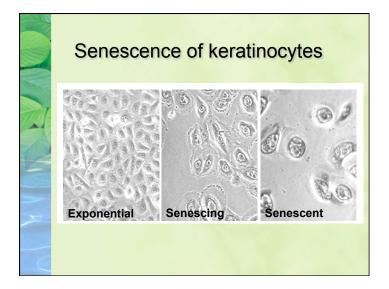





### How Does Telomerase Work?

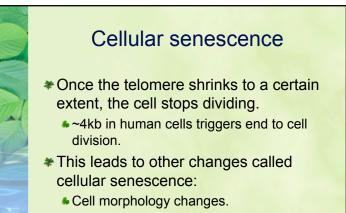

- Telomerase works by adding back telomeric DNA to the ends of chromosomes, thus compensating for the loss of telomeres that normally occurs as cells divide.
- Most normal cells do not have this enzyme and thus they lose telomeres with each division.

#### The telomere theory of aging

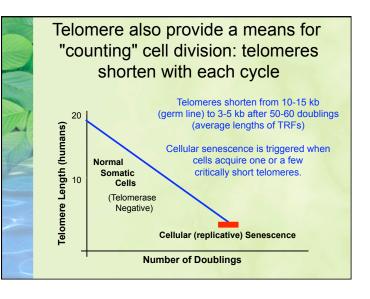

- Potentially immortal cells (germ cells, cancer cells) maintain telomerase activity
   Can divide indefinitely.
- \* Cells with a limited replicative lifespan.
  - Should have no telomerase activity.
  - Progressively shortening telomeres.
  - Cell division serves as a mitotic clock for replicative senescence.
- Provides a mechanistic explanation for the Hayflick limit.

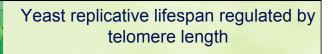


|                                                                                     | tion potential g                | routor in                                                      |
|-------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------|
| Organism + L.S:<br>-mouse about 3 year<br>-human about 100<br>-Galapagos tortoise a | -doubling                       | <b>.imit:</b><br>Is about 20<br>Is about 40-60<br>Is about 140 |
| Species                                                                             | Maximum<br>life span<br>(years) | Maximun<br>doubling<br>number                                  |
| Galapagos tortoise                                                                  | 175                             | 125                                                            |
| Man                                                                                 | 110                             | 60                                                             |
| Horse                                                                               | 46                              | 82                                                             |
| Chicken                                                                             | 30                              | 35                                                             |
| Cat                                                                                 | 28                              | 92                                                             |
| Kangaroo                                                                            | 16                              | 46                                                             |
| Mink                                                                                | 10                              | 34                                                             |
| Mouse                                                                               | 4                               | 28                                                             |




| Cell proliferation potential lower fro                 |                                |          |                                      |             |  |
|--------------------------------------------------------|--------------------------------|----------|--------------------------------------|-------------|--|
| •Cells from older donors have "used up" some of doubli |                                |          |                                      |             |  |
| Fetal Lung                                             |                                | ave used | Adult Lung                           |             |  |
| Strain                                                 | Number of population doublings | Strain   | Number of<br>population<br>doublings | Age of donc |  |
| WI-1                                                   | 51                             | WI-1000  | 29                                   | 87          |  |
| WI-3                                                   | 35                             | WI-1001  | 18                                   | 80          |  |
| WI-11                                                  | 57                             | WI-1002  | 21                                   | 69          |  |
| WI-16                                                  | 44                             | WI-1003  | 24                                   | 67          |  |
| WI-18                                                  | 53                             | WI-1004  | 22                                   | 61          |  |
| WI-19                                                  | 50                             | WI-1005  | 16                                   | 58          |  |
| WI-23                                                  | 55                             | WI-1006  | 14                                   | 58          |  |
| WI-24                                                  | 39                             | WI-1007  | 20                                   | 26          |  |
| WI-25                                                  | 41                             |          |                                      |             |  |
| WI-26                                                  | 50                             |          |                                      |             |  |
| WI-27                                                  | 41                             |          |                                      |             |  |
| WI-38                                                  | 48                             |          |                                      |             |  |
| WI-44                                                  | 63                             |          |                                      |             |  |
| Average                                                | 48                             |          | 20                                   |             |  |
|                                                        | (35-63)                        |          | (14-29)                              |             |  |

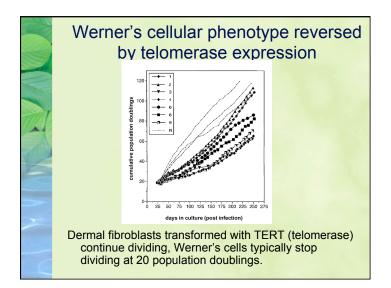




## **Telomerase Activity**

- In humans, telomerase is active in germ cells, in vitro immortalized cells, the vast majority of cancer cells and, possibly, in some stem cells.
- High telomerase activity exists in germ cells, stem cells, epidermal skin cells, follicular hair cells, and cancer cells.
- Inactive in most cells: somatic cells, differentiated cells, post-mitotic cells.



& Gene expression changes.






• Telomerase mutants have a short lifespan.

- When telomeres shorten to a critical point, yeast cells stop dividing.
- Overexpression of telomerase:
  - Longer telomeres.
  - Increased replicative lifespan.
- Subtelomeric gene expression is supressed.
  - Shortening of telomeres relieves the supression.

Telomeres in mice
Lab strains of mice have very long telomeres.
30-40kb telomeres.
Therefore, short telomeres aren't the cause of senescence in mice! *Tert* knock-out mice:
Normal for four generations as their telomeres shorten,
Premature aging phenotypes present in the 5th generation.

