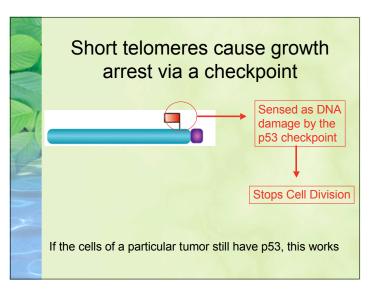
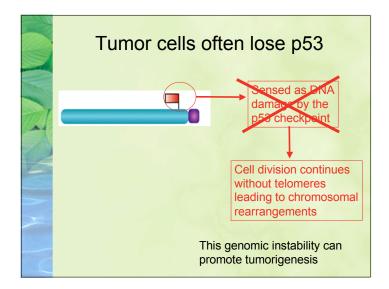


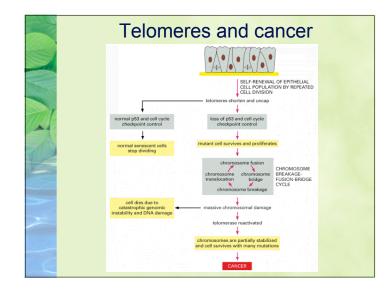
	(Nature 398,	geing hard or hardly 191-193, 1999) syndromes in mouse an	
	Symptoms	mTR ^{-/-} mice	Werner's syndrome
T	Shortened division capacity	+	+
40	Accelerated cell senescence	-	+
- 1	Premature greying	+	+
	Poor wound healing	+	+
	Increased cancer incidence	+	+
1 Contraction	Gut defects	+	?
	Infertility	+	+
	Shortened lifespan	+	+
	Decreased adipose tissue	+	+
	Hair loss	+	+
	Brain changes	-	~
	Osteoporosis	-	+
	Diabetes	-	+
	Atherosclerosis	-	+
	Cataract	-	+

Telomeres are one of the blocks to cancer formation

- The limited replicative potential of somatic cells blocks runaway cell division.
- Population doublings is an evolutionary trade off between cell renewal and cancer susceptibility.


 Telomerase and Cancer


 Will turning off telomerase in cancer cells cause them to senesce and thereby stop progression of the disease?


 Works in some cases.

 Studies in an important model system, Telemerase definient mise indicate that it will

Telomerase deficient mice indicate that it will probably depend on the type of tumor.

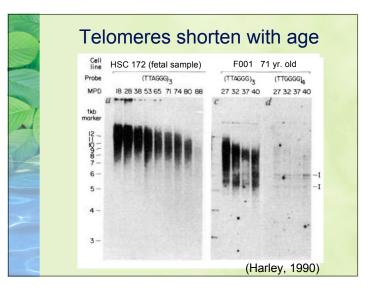


TABLE 1 Eff	fect of donor	age on telomere lengt	h in human fibrobla	
		Age		
Cell strain	in vivo years	in vitro MPD (MPD max)	Mean telomero length kb±s.d. (n)	
HSC172	Fetal	18-28 (88)	8.6 ± 0.5 (3)	
A30S	0	33 (58)	7.3 (1)	
A38	24	31-33 (68)	6.9±0.3 (2)	
A35	70	19 (41)	6.7 (1)	
F001	71	21-29 (40)	6.5 ± 0.4 (5)	
F002	91	18-20 (45)	6.2 ± 0.1 (3)	

Mean telomere length (the length of the terminal restriction fragment) was determined as described in Fig. 2a for fibroblast cell strains at the earliest available mean population doubling (MPD) in separate experiments. Strains were derived from female fetal lung (HSC172), female newborn skin (A30S), male forearm skin (A38, A35) or female abdominal skin (F001, F002). MPD at time of assay and senescence (MPD max) are indicated. The correlation between increasing donor age and decreasing telomere length is statistically significant (P < 0.05).

(Harley, 1990)

Telomere variation

Telomere lengths vary -- from cell to cell, from tissue to tissue.

2X difference often observed.

Only one telomere in a cells needs to shorten to the critical point for senescence to be triggered.

Hard to measure experimentally.

Telomere loss rate

 From a mechanistic basis, loss will be 8-12 bp per replication cycle.

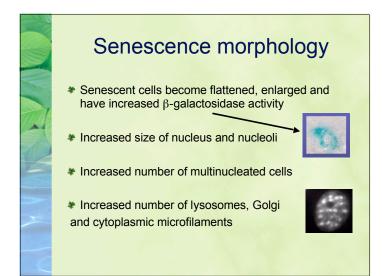
10 bp x 50 doublings = 500 bp loss.

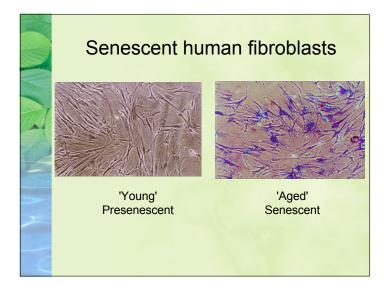
- In vivo, mean telomere length decreases by about 15 bp per year.
 - 15 bp x 80 yr = 1200 bp loss.
 (Harley, 1990)

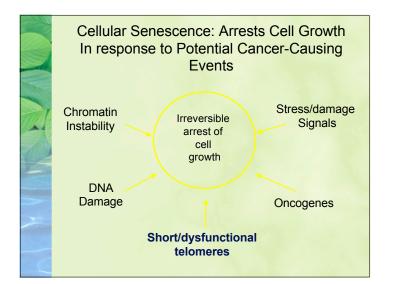
Telomere loss rate

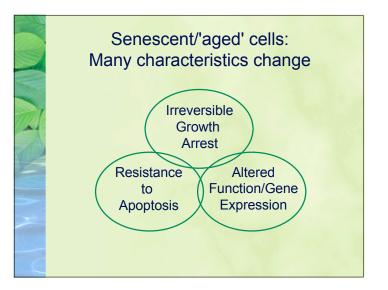
In typical cell culture conditions, telomeres lose 50 - 90 bp per doubling.

♣50 - 90 bp x 50 doublings = 2.5 - 4.5 kb loss.


Telomere loss rate is affected by oxidative stress:


- Under high oxygen partial pressure (double normal for cell culture), telomere loss rate is 5X higher.
 - 500 bp x 4 doublings = 2,000 bp loss
 - Cells stop dividing when telomeres shorten to 4kb after a few doublings.
- (von Zglinicki et al., 1995)


Telomere damage a source of shortening


Telomere loss rate is affected by oxidative stress:

- In cell culture, telomeres shorten faster under high oxygen partial pressure, low under low oxygen partial pressure.
- In stationary phase cell culture, put the culture under oxidative stress:
 - Can detect DNA damage at telomeres, DNA nicks (single strand breaks).
 - DNA repair at telomeres seems poorer than for other DNA.

		Distribution of cell types (%)						Macromolecular synthetic activity			
Mitotic?	Culture	T	Ш	ш	IV	v	VI	VII	RNA	Protein	Collage
Yes	PD17	18	70	10	1	0.5	0.5	0	1.00	1.00	1.00
Yes	PD30	3	78	16	2	0.5	0.5	0	1.33	5.6	1.4
Yes	PD55	0	1	79	14	3	3	0	3.36	7.9	4.3
No	PM 1 week	0	0	30	18	40	12	0	6.51	9.5	5.7
No	PM 3 week	0	0	3	31	43	23	0	9.93	11.2	6.2
No	PM 7 week	0	0	0	16	32	51	1	11.5	12.6	6.3
No	PM 11 week	0	0	0	4	5	87	4	9.5	12.4	9.6
No	PM 24 week	0	0	0	0	2	89	9	10.8	12.9	9.7
No	PM 40 week	0	0	0	0	0	88	12	11.6	11.8	10.2
o ource: dat		0 ayreut	0 her et a	0 al. (199	2).	0	88	12	11.6	11.8	10

Senescence is a progressive process

Table 12.3 Age-dependent Distribution of Fibroblast Cell Types in the Skin of Human Donors

	Fibroblast cell type (%)								
Age (years)	Sum MFI MFII MFIII MF PMFIV PMFV PMFVI							SUN PMF	
10	15	59	13	87	3	1	9	13	
30	7	54	12	73	11	3	13	27	
50	0	38	30	68	6	7	19	32	
70	0	6	39	45	14	5	36	55	
90	0	2	12	14	21	8	57	86	
Note: MF, mitot Fibroblasts s Cell types: •I-III are	ample mitotic	es from	people						
•IV-VI ar	e post	-mitotic	<i>.</i>		Ba	vreuther	otal 1	1026	

Felomere shortening: not universal Some animals do not undergo telomere shortening but still age: Rabbits and hares (Forsyth et al., 2005). Some invertebrates: Drosophila melanogaster (don't have telomeres). Podospora (a filamentous fungus) Senescence can happen in the absence of telomere shortening, for example in Hutchinson-Gilford progeria. Senescence also occurs in non-dividing cells (ie., neurons).