Role of heat shock proteins in aging

A&S300-002 Jim Lund

Heat shock proteins

- Initially discovered in Drosophila as proteins induced in response to culturing flies at high temperatures. (Ashburner and Bonner, 1978)
- Now known to be ubiquitous.
 - Bacteria, vertebrates, plants.

Heat resistance genes

- Antioxidant proteins.
 - SOD, catalase, GSH, thioreductin
- Heat shock proteins.
 - HSPs, HSP16s, HSP70s
- Innate and acquired immunity genes.
 - Antibacterial, antifungal

Heat shock proteins

- Induced in response to many stressors.
 - Heat shock
 - Heavy metals
 - Oxidative stress
- Also called HSPs, cellular stress proteins and molecular chaperones.
Heat shock protein function

- Chaperones: help newly synthesized proteins fold.
- Protect proteins from cellular stresses that can cause unfolding and aggregation.
- Target proteins to degradation, prevent and clean up protein aggregates.

Cellular roles of HSPs

HSP complexes

Heat shock protein function

- Present normally in cells.
- Stress increases levels of unfolded proteins, makes aggregates more likely to form.
- Stress increases levels of HSPs.
 - Both transcriptional and post-transcriptional mechanisms.
 - Total levels of protein synthesis in the cell inhibited by stress.
HSP response to stress

- Cells in young animals rapidly alter levels of HSPs.
- Older animals lose the ability to induce HSPs and other stress response proteins.
- Observed in yeast, worms, flies, and mouse and human cell lines.

Heat shock induction declines with age

- Cells in young animals rapidly alter levels of HSPs.
- Older animals lose the ability to induce HSPs and other stress response proteins.
 - Observed in yeast, worms, flies, and mouse and human cell lines.

Transcriptional control of HSPs

- **Heat shock factors (HSF)**
 - Major transcription factors responsible for stress-induced HSP expression
 - HSF1 and HSF4 (**hsf-1** in **C. elegans**)
 - Responsible for stress-induced HSP expression.
 - HSF2 responsible for developmental regulation of heat shock proteins.
 - HSF3, avian specific.

 HSF1 is the best studied HSF.

HSF functions

- Pirkkala et al., 2001
Induction of HSP70 in hepatocytes

In rat hepatocytes, the regulation of HSF70 by HSF1 was studied.

• HSF1 induces HSP70 in cells from young rats, but HSP70 is only weakly induced in cells from old rats.
• HSF1 loses ability to bind the HSP70 promoter in old cells.
 • HSF1 undergoes post-transcription modification that alters promoter binding.

Age-related changes in HSF1

HSP overexpression can extend lifespan

• Hsp22 (a mitochondrial HSP) overexpression can extend lifespan in *Drosophila*.
 – Ubiquitous or targeted expression in motorneurons: 30% lifespan extension. (Kurapati et al., 2000)
• Drosophila lines selected for longevity.
 – Hsp22 2X - 10X higher expression relative to control outbred lines.
 – Hsp23 also significantly overexpressed. (Kurapati et al., 2004)

Mitochondrial HSPs

Overexpression of HSPs in mitochondria.

• Decreases production of free radicals.
• Increases mitochondrial efficiency.

May be a mechanism by which HSP overexpression leads to longevity.
HSP overexpression can extend lifespan

- HSP16 in the worm is not expressed in young worms, but expressed in old (16+ days old) worms.
- Overexpression of HSP16 extends lifespan.
- Depends on DAF-16.
- Thermotolerance also increased.

Walker and Lithgow 2003

DAF-16 and HSPs

- HSP70 and HSP90 expression is also dependent on DAF-16 (Forkhead family transcription factor) expression.

Munox et al., 2003

HSP16 transgenics: +15% lifespan

Thermotolerance is increased in *C. elegans* Daf mutants
HSF-1 expression affects lifespan

- *C. elegans hsf-1* knockout has reduced lifespan.
- *hsp-1* overexpression extends lifespan.
- Recall *daf-2* has a long lifespan. *hsf-1* is required for *daf-2* long lifespan.

Hsu et al., 2003

HSP and protein aggregation

- Protein aggregate formation is involved in the development of neurogenerative disease.
 - β-amyloid, tau, and polyglutamine protein aggregate formation is slowed by HSPs
 - Overexpression of HSPs delayed aggregate formation.
- *hsf-1* overexpression in *C. elegans* delays formation of polyglutamine protein aggregates (Hsu et al., 2003).

HSF transcription response

- Chromatin immunoprecipitation (ChIP) combined with DNA microarrays was used to identify direct transcriptional targets of HSF in yeast.
- 3% of yeast genes identified as targets:
 - Protein folding and degradation
 - Energy generation
 - Protein trafficking
 - Maintenance of cell integrity
 - Small molecule transport
 - Cell signaling
 - Transcription

Hahn et al., 2004
HSF activated genes are stress induced

Hahn et al., 2004