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Genetic alterations in accelerated ageing syndromes
Do they play a role in natural ageing?
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Abstract

The molecular mechanisms leading to human senescence are still not known mostly because of the complexity of the pro-
cess. Different research approaches are used to study ageing including studies of monogenic segmental progeroid syndromes.
None of the known progerias represents true precocious ageing. Some of them, including Werner (WS), Bloom (BS), and
Rothmund–Thomson syndromes (RTS) as well as combined xeroderma pigmentosa–Cockayne syndrome (XP–CS) are charac-
terised by features resembling precocious ageing and the increased risk of malignant disease. Such phenotypes result from the
mutations of the genes encoding proteins involved in the maintenance of genomic integrity, in most cases DNA helicases. Defec-
t rogeroid
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ive functioning of these proteins affects DNA repair, recombination, replication and transcription. Other segmental p
yndromes, such as Hutchinson–Gilford progeria (HGPS) and Cockayne syndrome are not associated with an incre
ancer. In this paper we present the clinical and molecular features of selected progeroid syndromes and describe t
mplications of these data for studies of ageing and cancer development.
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1. Introduction

Little is known about the pathophysiology of hu-
man senescence. It is thought to be a complex process
involving genetic and environmental factors, affecting
several physiological pathways. Identification of the
genes for age-related disorders, such as circulatory sys-
tem disorders, diabetes mellitus, cancer, dementia, os-
teoporosis, etc., is difficult because most of these disor-
ders are polygenic and their occurrence is strongly re-
lated to modifying environmental factors. The other ap-
proach to the study of ageing is to identify the genes re-
sponsible for age-related monogenic hereditary disor-
ders – so-called progeroid syndromes. In 1978,Martin
(1978)defined 21 criteria of human ageing: 3 pheno-
typic alterations in cells and 18 phenotypic alterations
in tissue or the total organism. He selected 83 autosomal
dominant, 70 autosomal recessive, 9 sex-linked heredi-
tary disorders, and 3 chromosomal syndromes as ‘seg-
mental progeroid syndromes’. To date, no progeroid
syndrome is known that exactly resembles ‘physiolog-
ical’ ageing, therefore the name ‘segmental syndromes’
is fully justified. Not all of them shorten patients’
lifespan. Most features of ordinary ageing are present
in Werner syndrome (WS) and Hutchinson–Gilford
progeria (HGPS) patients. Most extensively studied
are the progeroid syndromes caused by defective heli-
case proteins, including Werner (WS), Cockayne (CS),
Rothmund–Thomson (RTS), and Bloom (BS) syn-
dromes, and xeroderma pigmentosa (XP) and trichoth-
i u-
t ria,
L dis-
e lec-
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drome, the responsible gene is still not known. In this
review we describe the clinical and molecular features
of the best known and most well studied progeroid
syndromes, with special emphasis on the function of
the mutated syndrome-responsible proteins, and po-
tential implications for the development of malignancy
(Tables 1 and 2).

2. Hutchinson–Gilford progeria

It is estimated that this autosomal dominant dis-
ease occurs in 1:4–8 million births. Only approxi-
mately 100 cases have been described in medical jour-
nals. The first description of this disease was given
by Hutchinson and independently by Gilford, in 1886.
At birth, affected infants appear normal (only a few
cases of intrauterine disease presentation are known
(Rodriguez, Perez-Alonso, Funes, & Perez-Rodriguez,
1999)). Typical manifestations develop gradually be-
ginning from sixth to twelfth month of life, and are
evident by the first or second year of life. There is lit-
tle phenotypic variation: all affected children are short,
have a similar facial appearance with midface hypopla-
sia, micrognathia, prominent eyes, protruding ears with
the absence of earlobes, delayed closure of fontanelles
and sutures, alopecia, prominent scalp veins, atrophic
skin, delayed dentition, and decreased subcutaneous
fat, thin limbs with prominent stiff joints, coxa valga,
generalised osteodysplasia with osteolysis and patho-
l ice.
M gic
e ere
a chil-
d nor-
m death
odystrophy (TTD). In contrast, the gene which m
ation is responsible for Hutchinson–Gilford proge
MNA, has just recently been associated with this
ase, and therefore little is known about the mo
lar mechanisms leading to this progeria phenot

n other cases, e.g. Wiedemann–Rautenstrauch
ogic fractures, dystrophic nails and high-pitched vo
etabolic, endocrine, serum lipid and immunolo

xaminations show no uniform abnormalities. Th
re no signs of precocious brain ageing. HGPS
ren’s intelligence and emotional development are
al. The median age at death is 13.4 years, and
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Table 1
Selected progeroid syndromes – the summary of the genetic background

Syndrome Gene Protein Function

Hutchinson–Gilford LMNA Lamin A Nucleus structure, mechanotransduction
Werner WRN WRN DNA helicase DNA repair, recombination
Bloom BLM BLM DNA helicase DNA repair, recombination
Rothmund–Thomson RECQL4 RECQL4 DNA helicase Unknown, possibly as other helicases
Cockayne CSA, CSB, XPB, XPD,

XPG
CSA WD-repeat protein,
CSB DNA helicase,
XPB DNA helicase,
XPD DNA helicase,
XPG exonuclease

Transcription-coupled DNA repair, transcription

is usually the result of myocardial infarction or stroke.
Remarkably, no increase in cancer frequency is asso-
ciated with this syndrome.

The first clues regarding the location of the gene
responsible for HGPS on chromosome 1q arose from

the observation of a case with 1q23 6 Mb deletion and
two other cases of 1q20–24 inverted insertion in twins
with progeria. In 2003 two reports describing muta-
tions within the lamin A/C gene (LMNA) in HGPS
patients were published simultaneously.Eriksson et

Table 2
Selected progeroid syndromes – the summary of the clinical signs

Syndrome Age at presentation Clinical signs Length of life, typical cause of death

Hutchinson–Gilford 6–12 months Short stature, midface hypoplasia, microg-
nathia, prominent eyes, alopecia, prominent
scalp veins, atrophic skin, decreased subcuta-
neous fat, osteoporosis with pathologic frac-
tures, cardiovascular disease

10–20 years, myocardial infarction,
stroke, no malignant disease

Werner Puberty Short stature, alopecia, atrophic skin, fat de-
posits on the trunk, trophic ulcerations of
the legs, diabetes mellitus type II, osteoporo-
sis, juvenile bilateral cataract, hypogonadism,
atherosclerosis, neoplastic disease

40–50 years, myocardial infarction,
cancer

Bloom At birth Short stature, narrow face, small mandible,
prominent nose and big ears, sensitivity to
sunlight, teleangiectatic skin lesions, hyper-
and hypopigmentation, variable degree of im-
munodeficiency, diabetes mellitus, defective
fertility, neoplastic disease

Almost normal lifespan, cancer

Rothmund–Thomson 3–6 months Short stature, photosensitivity, polikiloderma,
hyperkeratosis, alopecia, cataract, reduced
fertility, neoplastic disease (usually sarcoma)

Normal lifespan, cancer

Cockayne CSA: 1–3 years, CSB: at
birth, XP–CS: first year

Severe growth retardation with lack of sub-
cutaneous fat (so-called cachectic dwarfism),
atrophic skin, sparse hair, progressive neu-
rodevelopmental abnormalities with micro-

iffuse d
the co
tinal a

hearing
s abov

CSA: 20–40 years, CSB: 6–7 years,
central nervous system deteriora-
tion, infections, no malignant disease,
XP–CS: as CS, central nervous sys-
cephaly, d
deposits in
gressive re
sorineural
XP–CS – a
ysmyelination and calcium
rtex and basal ganglia, pro-
trophy and cataracts, sen-
loss, acute sun sensitivity.

e, and neoplastic disease

tem deterioration, cancer
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al. (2003)revealed that 18 out of 20 classic HGPS
cases harboured an identical mutation, a GGC > GGT
single-base substitution at position 1824 within exon
11. Such substitution located to codon 608 did not alter
the amino acid sequence of the encoded protein. Iden-
tical mutation has been found byDSG et al. (2003)
in two patients who had a heterozygous C to T tran-
sition at nucleotide 1824. This change was not found
in 300 control samples from healthy subjects or in the
parents of the affected children. Further analysis re-
vealed that an additional cryptic donor splicing site has
been introduced by this mutation in exon 11 at posi-
tion 1819–1820. As a result, lamin A encoded by the
mutated gene lacks 50 amino acids near the carboxy
terminus, while lamin C also encoded by this gene is
normal. de Sandre-Giovannoli et al. also showed that
both normal and truncated transcripts were produced
by the same allele (T at position 1824). The mutation
would then inhibit transcriptional processing of the nor-
mal allele, acting as a dominant negative mutation. It is
important to note that otherLMNAmutations in HGPS
patients have been described, namely R471C, R527C,
G608S and 2036C>T (Cao & Hegele, 2003).

Lamin A/C proteins encoded by theLMNA gene
are ubiquitous components of the nuclear lamina,
a structure near the inner nuclear membrane and
the peripheral chromatin. The nuclear lamina is in-
volved in many processes that occur inside the nu-
cleus, including chromatin organisation, cell cycle
and apoptosis regulation, DNA and RNA process-
i sts
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ical sensitivity of the cell could be altered. Indeed,
the experiments with lamin A/C-deficient mouse em-
bryo fibroblasts subjected to mechanical strain showed
defective nuclear mechanics and impaired mechani-
cally activated gene transcription (Lammerding et al.,
2004; Worman & Courvalin, 2004). Other experiments
show that cellular ageing of Hutchinson–Gilford proge-
ria syndrome fibroblasts is characterised by a period of
hyperproliferation and terminates with a large increase
in the rate of apoptosis (Bridger & Kill, 2004), and
that fibroblast clones derived from HGPS donors fre-
quently fail to immortalise with telomerase despite the
restoration of telomerase activity and the stabilisation
of telomere length (Wallis et al., 2004). Clearly, the cel-
lular and molecular mechanisms that play a role in the
pathophysiology of Hutchinson–Gilford progeria still
await their explanation.

3. Werner syndrome

The first written description of the clinical symp-
toms of the syndrome was delivered by Werner in
1904. It is estimated that, worldwide, there are cur-
rently approximately 1300 people suffering from this
disease, which makes Werner syndrome the most com-
mon known progeroid syndrome. The majority of pa-
tients are Japanese. The reason for this concentration
within one ethnic group is not known. Most proba-
bly it is a result of inbreeding, although other rea-
s ssive
p sio-
l n-
s her
f uch
a scle-
r fect-
i nd
c lop
n the
d hich
r the
t air
a fat is
d ities
l lli-
t hy-
p syn-
ng, etc. Microscopic analysis of HGPS fibrobla
robed with antibodies directed against lamin A
ealed abnormalities of the nuclear membrane. S
larly, HGPS lymphocytes exhibit nuclear size a
hape alterations with envelope interruptions and c
atin extrusions. It is important to note that a w

pectrum of human disorders – Emery–Dreifuss
imb girdle muscular dystrophies, dilated cardiom
pathy with conduction disease, autosomal rece
xonal neuropathy, mandibuloacral dysplasia, fa

al partial lipodystrophy, Greenberg skeletal dyspla
elger–Huet anomaly, and finally Hutchinson–Gilf
rogeria – are all ascribed toLMNA mutations. It is
ot known why the abnormalities within this gene
ult in diseases with such diverse phenotypes.
s partly because the function of lamins is still
ompletely determined. Muscle manifestation of so
MNA-mutated phenotypes suggests that the mec
ons are also possible. WS is an autosomal rece
rogeroid syndrome most closely resembling ‘phy

ogical’ ageing. Still, the typical WS phenotype co
ists not only of typical ageing signs but also of ot
eatures not commonly present in normal ageing (s
s skin ulcers around the ankles and elbows, athero
otic changes mostly in arterioles, osteoporosis af
ng mostly long bones of the lower extremities, a
alcification of cardiac valves). WS patients deve
ormally until they reach puberty. The first sign of
isease is absence of the pubertal growth spurt, w
esults in short stature in the affected adult. By
hird decade of life, premature greying, loss of h
nd skin atrophy become apparent. Subcutaneous
eposited mostly on the trunk. In contrast, extrem

ook thin. Trophic ulceration of the legs, diabetes me
us type II, osteoporosis, juvenile bilateral cataract,
ogonadism and atherosclerosis develop. Werner
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drome is a cancer-prone disease. Compared with the
general population, an excess of soft tissue sarcomas,
osteosarcomas, myeloid disorders and benign menin-
giomas have been observed in WS patients. In Japanese
subjects an excess of thyroid cancers and melanomas
was also observed. The ratio between cancers of epithe-
lial origin and sarcomas of mesenchymal origin in WS
patients is 1:1, while in the general population it is 10:1.
In addition, the primary sites of the cancers are also not
typical in WS patients. For example, melanomas fre-
quently develop in regions not exposed to the sun, and
osteosarcomas frequently localise to the lower extrem-
ities, whereas in the general population they localise to
upper extremities (Goto, Miller, Ishikawa, & Sugano,
1996; Ishikawa, Miller, Machinami, Sugano, & Goto,
2000). There is a suggestion that the site of mutation
in theWRNgene might be linked to the type of cancer:
papillary thyroid carcinomas seem to be more com-
mon in patients with mutation in the N-terminal end of
the WRN protein, while follicular carcinomas tend to
develop in WS patients bearing mutations within the
C-terminal end of this protein (Ishikawa et al., 1999).
WS patients typically die in the fifth decade of life (at
an average age of 47 years), owing to cardiovascular
disease or cancer.

The genetic hallmark of WS is genomic instability.
The defect responsible for this syndrome was tracked
down in 1996, whenWRN(RECQL2) gene was cloned
and its mutations in WS patients found (Yu et al.,
1996). The gene is localised on 8p11–12 locus and en-
c ous
t he-
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2
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Shimamoto, Goto, & Furuichi, 1997). This uniformity
of molecular events possibly accounts for the low phe-
notypic variation observed in WS patients. It is impor-
tant to note that missense changes in theWRNgene are
also known, and are typically considered polymorphic
changes. It is possible, though, that mutations of this
type might also result in WS phenotype.

Wild type WRN protein binds to the single-stranded
part of the longer strand of DNA duplex and moves in
a 3′ → 5′ direction. It unwinds DNA-DNA and DNA-
RNA duplexes, DNA triple helix, G2 tetraplexes, and
G4 tetraplexes made by two hairpin loops of d(CGG)n
(interestingly, the sequences that can form G4 struc-
tures are present in telomeres, among others), and pro-
motes branch migration of a Holliday junction. With re-
gard to its exonuclease activity, double-stranded DNA
with multiple base-pair mismatches and structures sim-
ilar to Holliday junctions are more susceptible to di-
gestion by WRN than DNA without mismatches (for a
review of WRN seeChen & Oshima, 2002).

WRN interacts with several protein components
of the DNA replication complex, such as proliferat-
ing cell nuclear antigen (PCNA) and topoisomerase I
(Lebel, Spillare, Harris, & Leder, 1999). It also inter-
acts with DNA polymerase�, so one of its functions
might be the recruitment of this polymerase to the com-
plex secondary structures of DNA and alleviation of
stalled DNA synthesis (Kamath-Loeb, Loeb, Johans-
son, Burgers, & Fry, 2001). A direct interaction be-
tween WRN and Bloom syndrome helicase (BLM) has
b foci,
a N
( nd
B itiv-
i m-
p M
p may
b ary
f d
t
R d
o -
c es-
s ,
& kb
o i
e ell
l and
odes a 1432 amino acid protein (WRN) homolog
o RecQ subfamily helicases (for a review of RecQ
icases in cancer and ageing seeBachrati & Hickson
003; Furuichi, 2001; Karow, Wu, & Hickson, 2000;
ohaghegh & Hickson, 2002). Indeed, WRN func

ions as a 3′ → 5′ DNA helicase (Gray et al., 1997),
ut additionally acts as a 3′ → 5′ exonuclease (Huang
t al., 1998). The presence of exonuclease dom
akes WRN protein different from other RecQ h

ases. Helicase and exonuclease domains do not
ap. Approximately 40 different mutations have b
escribed so far in theWRNgene. Mutations are eith
omozygous or compound. They are frameshift m

ions, nonsense mutations or large genomic delet
nd result in the production of truncated WRN pro

acking a nuclear localisation signal. Therefore, tr
ated WRN fails to translocate into the nucleus,
annot perform its physiological function (Matsumoto
een shown. Both proteins colocalised to nuclear
nd BLM inhibited the exonuclease activity of WR
von Kobbe et al., 2002). The absence of both WRN a
LM proteins synergistically increased hypersens

ty of the cell to genotoxic agents and UV light, co
ared with cells with deletions of either WRN or BL
roteins alone. This suggests that the two proteins
oth be involved in DNA repair in a complement

ashion (Inamura et al., 2002). In WS cells decrease
elomeric DNA repair efficiency was observed (Kruk,
ampino, & Bohr, 1995). WRN protein has been foun
n telomeres (Shiratori et al., 1999), where it is re
ruited by TRF2, a telomeric repeat binding factor
ential for correct telomeric structure (Machwe, Xiao
Orren, 2004). WRN was shown to unwind up to 23
f a PCR-generated telomere repeat sequence (Ohsug
t al., 2000). Telomeres found in lymphoblastoid c

ines originating from WS patients are unstable
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of varying length. In WS fibroblasts telomeres shorten
quickly, and cells stop dividing while telomeres are still
quite long. Overexpression of telomerase in these cells
decreases the rate of their senescence (Wyllie et al.,
2000). These findings suggest that WRN protein plays
an important role in telomere maintenance. WRN has
been shown to suppress increased homologous and il-
legitimate recombination (Yamagata et al., 1998).

Although global repair ability of WS cells is nor-
mal (Fujiwara, Higashikawa, & Tatsumi, 1977), the
absence of the above described functions of WRN re-
sults in defective replication, inefficient transcription-
coupled DNA repair, deficient mismatch repair, and
chromosome rearrangements such as deletions and
multiple translocations, as well as increased spon-
taneous mutation and deletions generated by non-
homologous hyper-recombination (Fukuchi, Martin,
& Monnat, 1989; Fukuchi et al., 1985). Altogether,
these alterations result in major genomic instability
and cancer predisposition (Bachrati & Hickson, 2003;
Furuichi, 2001; Mohaghegh & Hickson, 2002; Moser
et al., 2000). Interestingly, a direct interaction between
WRN and p53 has been shown. In the absence of WRN,
p53-directed apoptosis was attenuated (Spillare et al.,
1999), while overexpression of WRN potentiated p53-
dependent apoptosis (Blander et al., 1999). p53-null,
WRN-defective double mutant transgenic mice devel-
oped a variety of tumours not detected in either type
of single mutant (Lebel, Cardiff, & Leder, 2001). The
overexpression of MYC oncoprotein in WS fibroblasts
o . So
d
m by
p
P im-
p ge-
n rner
s neo-
p

4

m,
w sive
d but
i ts of
E eed-

ing. It is estimated that 1 in 100 Ashkenazi Jews is a
carrier of the defective gene. Clinically, the syndrome
is characterised by growth deficiency of prenatal on-
set and other features that develop later, such as sen-
sitivity to sunlight, teleangiectatic skin lesions, hyper-
and hypopigmentation, variable degree of immunode-
ficiency (decreased levels of immunoglobulin A and M
with recurrent respiratory and gastrointestinal tract in-
fections), diabetes mellitus and defective fertility (men
are infertile, women have reduced fertility). Sufferers
have a narrow, birdlike face, small mandible, prominent
nose and big ears. Despite patients’ short stature, the
extremities (especially upper ones) are disproportion-
ately long with large hands and feet. Compared with
the general population BS patients are at 150–300-fold
increased risk of a wide variety of malignancies, in-
cluding blood cell-derived and epithelial cancers. The
cancers arise unusually early, with leukaemia develop-
ing at an average age of 22 years and solid tumours in
the fourth decade of life. Interestingly, a clinical dif-
ference between leukaemia patients with and without
BS is that leukaemia in BS usually presents itself with
leukopenia rather than leukocytosis.

The genetic hallmark of Bloom syndrome is an
inability to suppress hyper-recombination. The fre-
quency of homologous recombination events is in-
creased 10-fold in BS cells in comparison to nor-
mal cells. The gene responsible for this condition was
cloned in 1995 (Ellis et al., 1995). BLM is located
on chromosome 15 (locus 15q26.1) and encodes 1417
a to
R t,
i nd
G les
a ble
s

e,
n omic
d ma-
t un-
c ed
B us
s nt in
i ar-
i s, its
f d/or
D ical
f of
r after WRN depletion led to cellular senescence
irect up-regulation of wild typeWRNby MYC in nor-
al cells may promote MYC-driven tumourigenesis
reventing cellular senescence (Grandori et al., 2003).
hysiologically, such interactions may be of great
ortance for the prevention of the accumulation of
etic aberrations that, if not removed (such as in We
yndrome), can lead to premature senescence or
lastic transformation.

. Bloom syndrome

The first description of the syndrome, by Bloo
as published in 1954. BS is an autosomal reces
isorder that may occur in different ethnic groups

s most common in Ashkenazi Jews (descendan
astern European Jews), owing to intensive inbr
mino acid BLM (RECQL3) protein homologous
ecQ helicases. BLM is a 3′ → 5′ DNA helicase tha

n addition to unwinding duplex DNA, is able to unwi
4 tetraplexes, triple helix, Holliday junctions, bubb
nd forked DNA. BLM is necessary for normal dou
tranded break repair (Langland et al., 2002).

The alterations affectingBLM gene are missens
onsense or frameshift mutations, and large gen
eletions. All but missense mutations result in pre

ure translation termination and production of the tr
ated BLM protein. Like truncated WRN, shorten
LM protein also fails to translocate to the nucle
ince the nuclear localisation signal normally prese
ts C-terminus is deleted. Although BLM protein be
ng a missense mutation is present in the nucleu
unction is abolished due to the lack of ATPase an
NA helicase activity. The absence of physiolog

unction of BLM results in a markedly elevated rate
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mutations, and a high frequency of chromosomal aber-
rations and sister chromatid exchange (SCE), owing
to excessive recombination. Expression of wild type
BLM in BS cells can decrease their high SCEs to nor-
mal levels.

BLM physically interacts with topoisomerase III�
(Johnson et al., 2000). Expression of a BLM deletion
mutant defective in topoisomerase III� binding results
in intermediate SCE levels. This suggests the involve-
ment of both proteins in the regulation of recombina-
tion in somatic cells (Hu et al., 2001). It is proposed that
interaction of RecQ helicase with topoisomerase III�
might be a well conserved mechanism that disrupts re-
combination intermediates between erroneously paired
nucleic acid molecules (Harmon, DiGate, & Kowal-
czykowski, 1999). Indeed, it has been shown that BLM
and topoisomerase III� catalyse the resolution of a re-
combination intermediate containing a double Holliday
junction. This mechanism prevents exchange of flank-
ing sequences (Wu & Hickson, 2003).

BLM interacts with single-stranded DNA-binding
protein – replication protein A. Such binding stim-
ulates BLM protein helicase activity (Brosh et al.,
2000). BLM also interacts with RAD51, the protein
accumulating in nuclear foci that are thought to corre-
spond to sites of recombinational repair (Wu, Davies,
Levitt, & Hickson, 2001). This and the ability of BLM
to unwind G4 structures suggest the involvement of
this protein in DNA replication and repair. BLM also
interacts with 5′-flap endonuclease/5′–3′ exonuclease
( aki
f ein
s lytic
c

ted
g on-
t ro-
t NA
o
a -
t n in
D of
B and
d al-
t se I
a r
c ese
c

p53-mediated apoptosis is defective in BS fibrob-
lasts and can be rescued by expression of the normal
BLM gene (Wang et al., 2001). Further inactivation of
p53 prevented the death of damaged BS cells and de-
layed recruitment of BRCA1 to nuclear foci (Davalos
& Campisi, 2003). Expression of BLM in p53 wild
type cells causes an anti-proliferative effect that is not
present in p53-deficient cells. p53-mediated transacti-
vation is attenuated in BS fibroblasts (Garkavtsev, Kley,
Grigorian, & Gudkov, 2001). After hydroxyurea treat-
ment, p53 and BLM co-localised with each other and
with RAD51 at sites of stalled DNA replication forks.
The absence of p53 enhanced the rate of spontaneous
sister chromatid exchange in BS cells. These results
indicate that p53 and BLM functionally interact during
resolution of stalled DNA replication forks (Sengupta
et al., 2003). Interactions between p53 and BLM pro-
tein suggest that Bloom syndrome cancer-prone phe-
notype may in part be a result of the deregulation of the
p53 tumour suppressor pathway.

Interestingly, it has been shown that human BLM
can prevent premature ageing in yeast (Heo et al.,
1999). However, the role of this protein in ordinary
human ageing remains to be elucidated.

5. Rothmund–Thomson syndrome

Rothmund first described this syndrome in 1868.
Only approximately 300 cases have been described
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disease is diagnosed early and is adequately treated).
Inheritance is autosomal recessive.

The disease is caused by abnormalities within the
RECQL4gene localised on the long arm of chromo-
some 8 (position 8q24.3) (Kitao et al., 1999). As in the
above-described WS and BS, this gene encodes another
protein homologous to RecQ helicases. Its function has
not been extensively studied, but based on its structural
similarity to WRN and BLM helicases it is predicted to
be an ATP-dependent enzyme unwinding DNA struc-
tures.

Mutations ofRECQL4gene found in RTS patients
affect either the coding sequence or the splice junctions
and frequently result in the production of truncated pro-
tein. The correlation of mutation type with cancer de-
velopment has been studied. TruncatingRECQL4mu-
tations were found in two-thirds of 33 RTS patients
examined. However, all RTS patients suffering from
osteosarcoma had such mutations. In other words, there
was a significant correlation between truncating muta-
tions and the risk of osteosarcoma (Wang et al., 2003).
As in other syndromes associated with helicase dys-
function, RTS cells are characterised by marked ge-
nomic instability associated with chromosomal rear-
rangements resulting in acquired somatic mosaicism.
RECQL4transcripts are down-regulated in cells from
RTS patients (Kitao, Lindor, Shiratori, Furuichi, & Shi-
mamoto, 1999). Embryonic fibroblasts from transgenic
mice with deletions within the RecQ helicase domain
of RECQL4genes show a defect in cell proliferation
(
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The interactions of RECQL4 with other proteins

till unknown. Interestingly,RECQL4mutations hav
lso been found in another inborn genetic defect –
ADILINO syndrome characterised by growth re
ation, forearm, thumb and patella defects, infan
iarrhoea and hypogonadism, but not by a signifi
ancer risk (Siitonen et al., 2003).
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CS is another autosomal recessive segm
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ear of life and most patients die in the second or t
ecade of life, owing to malignancy.

The disease is caused byCSAorCSBmutation.CSA
ERCC8) defective in Cockayne syndrome group
as cloned in 1995. It is located on the long arm
hromosome 5 (5q12.3) and encodes CSA protein
onging to the family of WD-repeat proteins (Henning
t al., 1995). CSB (ERCC6), mutations in which re
ult in Cockayne syndrome group B, was clone
992 (Troelstra et al., 1992). It is localised to lo
us 10q11, and encodes another member of th
icase family. Mutations found inCS genes are ho

ozygous or compound, missense, nonsense muta
r deletions (Cao, Williams, Carter, & Hegele, 200;
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Colella, Nardo, Botta, Lehman, & Stefanini, 2000; Ren
et al., 2003). Both proteins encoded byCSgenes are
components of the transcription-coupled DNA repair
(TCR) subpathway of the nucleotide excision repair
(NER) system. Briefly, TCR involves damage recog-
nition by the stalled RNA polymerase II complex (Mu
& San-car, 1997), local DNA unwinding, incision on
both sides and removal of damaged oligonucleotide,
gap-filling DNA synthesis with the intact complemen-
tary strand as a template, ligation of the newly syn-
thesised oligonucleotide and the resumption of RNA
synthesis. More than 20 proteins are involved in this
process, including all XP proteins, mutations in which
result in xeroderma pigmentosa types A through G, or
a combined syndromes XPB-CS, XPD-CS and XPG-
CS, and both CSA and CSB proteins, damage of which
results in Cockayne syndrome A or B, respectively (for
review seede Boer & Hoeijmakers, 2000). The unwind-
ing step of TCR requires the presence of TFIIH com-
plex. TFIIH was originally identified as a factor crucial
for transcription initiation. It consists of nine subunits
including XPB and XPD, the two helicases that unwind
double stranded DNA in 3′ → 5′ and 5′ → 3′ direction,
respectively. Subsequently, the damaged strand is ex-
cised by the two exonucleases. The one restricting at
the 3′ side of the damage site is XPG.

After UV irradiation or oxidative DNA damage,
CSA protein rapidly translocates to the nuclear matrix
in a CSB-dependent manner. CSA interacts with CSB
and p44 subunit of TFIIH (Henning et al., 1995). In
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Based on the fact that xeroderma pigmentosa com-
plementation group A patients who are completely de-
ficient in nucleotide excision repair do not develop CS
symptoms, it is suggested that, in addition to NER de-
fects, transcription deficiency contributes to the devel-
opment of CS clinical symptoms. This is supported by
the fact that TFIIH with which CS proteins interact dur-
ing transcription-coupled repair, is not only a factor in-
volved in DNA repair, but is also a transcription factor,
and that RNA polymerase II-dependent transcription is
decreased in CS cell extracts (Balajee, May, Dianov,
Friedberg, & Bohr, 1997). Abnormal transcription-
coupled repair of oxidative DNA damage was detected
in CS cells, but not, as mentioned before, in XPA cells
that are completely NER deficient (Leadon & Cooper,
1993). Defective TCR of oxidative damage was also
found in XPG–CS cells but not in XPG cells (Cooper,
Nouspikel, Clarkson, & Leadon, 1997), and in XPB-CS
and XPD-CS cells but not in XPB or XPD cells. In ad-
dition, it has been shown that unrepaired 8-oxoguanine
blocked transcription by RNA polymerase II (Le Page
et al., 2000). These data further support the notion that
CS phenotype also results from the defective TCR of
oxidative lesions.

An interesting feature of CS is the unchanged risk of
cancer, despite UV hypersensitivity. In fact, it has been
demonstrated that cancer-predisposed Ink4a/ARF−/−
mice develop fewer neoplastic lesions if theirCSBgene
had been disrupted (Lu et al., 2001). Based on the data
regarding Cockayne syndrome and xeroderma pigmen-
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cts with the stalled transcription complex (van Gool e
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o the damaged DNA. CSB also induces chromatin
odelling (Citterio et al., 2000). The conformationa
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he lesion site as well as chromatin remodeling ma
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osa molecular defects, this can be explained by no
lobal genome nucleotide excision repair (GG-NER
S cells and abnormal GG-NER in XP cells. In fa
G-NER defect seems to be of crucial importance
eogenesis, since XPC patients develop cancers
nly their GG-NER but not their TCR function is a

ected. In other cases of XP both GG-NER and TCR
efective, so XP patients, including XPB-CS, XPD-
nd XPG-CS patients, suffer from neoplastic disea

What kind of XPB, XPD or XPG mutations res
ither in xeroderma pigmentosa or XP–CS is a m
f interest. It has been reported that XPG-CS pat
ad truncating mutations, while XPG patients had m
ense mutations that resulted in the production of
ength XPG protein defective in its exonuclease fu
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997). The role of the C-terminal end of XPG prote

n the development of CS phenotype is supporte
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the fact that homozygous transgenic mice with XPG
lacking the last 360 amino acids exhibit growth retar-
dation and short lifespan, although this phenotype was
milder than in XPG-null mice (Shiomi et al., 2004).
Individuals suffering from XPD-CS were shown to ex-
hibit uniqueXPD mutations. Even though the extent
of their NER defect was similar to XPD patients with
otherXPDmutations, their cells were extremely sensi-
tive to UV light (van Hoffen et al., 1999). The reason
for such hypersensitivity was the introduction of DNA
breaks not in close proximity to the lesion site (as a
necessary NER step) but in other locations. Therefore
in addition to their inability to remove oxidative dam-
age, XPD-CS cells break their own DNA after UV ir-
radiation (Berneburg et al., 2000). Another mechanism
responsible for the development of certain phenotypes
has been proposed namely the relative expression of
mutated XPB genes (Riou et al., 1999). Others have
demonstrated that mutations found in two XPB-CS pa-
tients decreased TFIIH transcriptional activity by pre-
venting promoter opening (Coin, Bergmann, Tremeau-
Bravard,& Egly, 1999).

7. Summary

A number of genes, including mitochondrial, Fas,
FasL, MHC class I, different lipid metabolism genes,
etc., have been studied in ordinary ageing. Some stud-
ies delivered negative results while others described
potential associations (Barzilai et al., 2003; Niemi et
a on
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nomic damage accumulate with age, and genomic in-
stability characterises one of the age-related diseases
– malignant disorder. Some clues to their potential in-
volvement in normal ageing or in longevity promo-
tion come from the analysis of polymorphisms of their
genes in different age groups. The analysis of a poly-
morphism at amino acid 1367 of WRN protein (Cys
(TTG)/Arg(CTG) inWRNgene) in Finnish newborns,
centenarians and the general population were similar
across age groups suggesting that there is no associa-
tion of this WRN polymorphism with longevity. How-
ever, if there is no association with longevity, there
might be link between the gene and common age-
related diseases. 1367 Cys/Arg seems to be associated
with a variation in the risk of myocardial infarction
in the Japanese population, with 1367 Arg allele being
less common but protective against this disease (Castro
et al., 1999, 2000). Frameshift mutation in the cod-
ing region of theBLM gene has been found in geneti-
cally unstable sporadic gastrointestinal tumours (Calin,
Herlea, Barbanti-Brodano, & Negrini, 1998). It might
be of interest to check the sequence/function of the
other proteins implicated in progeroid syndromes as-
sociated with malignant disease in different human tu-
mours characterised by marked genomic instability.

Until now, there is many more data suggesting
the involvement of different lipid metabolism genes
than genome integrity genes in the control of human
lifespan. Although progress in resolving the molecular
function of helicases and other progeroid syndrome-
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ally significant linkage within chromosome 4. Furt
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Geesaman et al., 2003).

Another approach to the study of ageing is the fu
ional analysis of the genes involved in the developm
f progeroid syndromes. Unfortunately, none of
nown progerias, including those most closely res
ling ordinary ageing (Hutchinson–Gilford and Wer
yndromes) represent true precocious ageing. S
isturbed function of such proteins in these disor

mplies their role in ‘physiological’ ageing. This
urther supported by the fact that many of these
eins are involved in the basic mechanisms that m
ain genome integrity and function, while signs of
ssociated proteins is rapid, our understandin
heir role in ordinary ageing (if any) remains to
lucidated.
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