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RNA is a versatile biopolymer that plays many roles be- 
yond simply carrying and recognizing genetic informa- 
tion as messenger RNA (rnRNA) and transfer RNA (tRNA). 
It has been known for two decades that RNA sequences 
can catalyze phosphodiester bond cleavage and ligation 
(~otidna & Ccch, 2002) and that RNA is an important 
component in the signal recognition particle (Walter & 
Blobel, 1982). ~ o ~ c e n t l ~ , z r  roles have been dis 
covered for RNA, including roles in development (Lagos 
Quintana et al., 2001; Lau et al., 2001), the immune sys- 
tem (Cullen, 2002), and peptide bond catalysis (Hansen 
et al., 2002; Nissen et al., 2000). Furthermore, RNA can 
be made to evolve in uitro to catalyze reactions that do 
not naturallyrbccur (B= et al., 2002). RNA is also an 
important target and agent for the pharmaceutical indus- 
try. In the ribosome, RNA is the target of several classes 
of antibiotics. mRNA is the target of drugs that work on 
the antisense principle (Dias & Stein, 2002) or by redi- 
recting alternative splicing (Sazani 8r Kole, 2003). RNA 
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sequences can also be tailored to catalyze therapeutic 
reactions, such as gene repair (Long et al., 2003). 

To understand fully its mechanism of action or to tar- 
get an RNA sequence, the structure of RNA needs to 
be understood. RNA structure has three levels of or- 
ganization, as shown in Figure 6.1. The first level, pri- 
mary structure, is the linear sequence of nucleotides. 
Secondary structure is the collection of canonical base 
pairs (meaning both Watson-Crick pairs and G U  pairs) 
in the RNA structure. Finally, tertiary structure is the 
three-dimensional arrangement of the atoms in the RNA 
sequence, and hence includes all of the noncanonical 
contacts. 

Often, the secondary structure of an RNA sequence 
is solved before its tertiary structure because there are 
accurate methods for determining the secondary struc- 
ture of an RNA sequence and because the knowledge 
of the secondary structure often is helpful in designing 
constructs for tertiary structure determination. A typi- 
cal RNA secondary structure, illustrated in Figure 6.2, is 
composed of both helical and loop regions. The helical 
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FIGURE 6.1 The three levels of organization of RNA structure. From 
left to right are the primary sequence, the secondary structure 
(Cannone et al., 2002). and the tertiary structure (Cate et al., 1996) of a 
domain of the group I intron from Tetrahymena. The secondary 
structure illustrates the canonical base pairs, and the tertiary structure 
is the actual three-dimensional arrangement of atoms. 
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FIGURE 6.2 The RNA secondary structure of the 3' UTR from the D. sucinea R2 

element (Lathe & Eickbush, 1997; Mathews et al., 1997). Base pairs in nonhelical regions, 
known as loops, are colored by type of loop. 

re-are held together by canonical base pairs. The -- 
loop regions fall into a broad categories: -in 
loops, in which the backbone makes a 180" bend; in- 

'- 

TEi%Z%ops, in which the pairing of both strands is 
interrupted; bulge loops, in which the pairing of one 
strand is interrupted; and multibranch loops (also called 
helical junctions), from which more than two helices 
exit. Although secondary structure diagrams often do 
not illustrate explicitly the specific nucleotide interac- 
tions within the loop regions, these are sites of many 
noncanonical interactions that stabilize the structure. 

The gold standard for predicting the placement of 
loops and helices, in the absence of a tertiary structure, 
is comparative sequence analysis, which uses evolution- 
aryzidence found in sequence alignments to determine 

base pairs (Pace et al., 1999). Base pairs predicted by 
comparative sequence analysis for large and small sub- 
unit rRNA are 97% accurate when compared with high- 
resolution crystal structures (Gutell et al., 2002). 

This chapter presents current methods for RNA sec- 
ondary structure prediction, including methods appli- 
cable to a single sequence and methods applicable to 
multiple available sequences. To that end, RNA folding 
thermodynamics and dynamic programming are intro- 
duced. A detailed example for applying secondary struc- 
ture prediction to a single sequence is drawn from the 
R2 retrotransposon 3' untranslated region (UTR) RNA se- 
quences (Eickbush, 2002). This chapter concludes with 
a brief introduction to the methods used for RNA tertiary 
structure prediction. 
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I R N A  S E C O N D A R Y  S T R U C T U R E  
T H E R M O O Y  N A M l C S  

Most methods for RNA secondary structure prediction 
rely on free energy minimization using nearest-neighbor 
paramzers for pre&ting t h e ~ a b i l i t y s c -  
ondary structure, in terms of Gibbs free energy at 37°C 
(AG;,; Mathews et al., 1999b; Turner, 2000; Xia et al., 
1999; Xia et al., 1998). The rules for predicting stabil- 
ity are called nearest-neighborparameters because the 
stability of each base pair depends only on the most ad- 
jacent pairs; the total free energy is the sum of each 
contribution. 

An example of a nearest-neighbor stability calculation 
is shown in Figure 6.3. Terms for s n g ,  1% 
initiation, and unpaired nucleotide ~tackin~contribute 
-rmational free energy. Favorable free .- 
energy increments are less than zero. -nergy 
increments of base pai __=C?h are coun e as stacks of adja- 
cent pairs. The consecutive CG base pairs, for example, 
are worth -3.3 kcal/mol (Xia et al., 1998). Note that the 
loop fqgions have unfavorable increments called loop 
initiation energies that largely reflect an entropic cost 
for constraining the nucleotides in the loop. For exam- 
ple, the hairpin loop of four nucleotides has an initia- 
tion of 5.6 kcaVmol (Mathews et al., 1999b). Unpaired 
nucleotides in loops can provide favorable energy incre- 
ments as either stacked nucleotides or as mismatched 
pairs. The 3'-most G, called a dangling end, stacks on 
the terminal base pair and provides - 1.3 kcal/mol of 
stability. The first mismatch in the hairpin loop with this 
sequence context is worth - 1.1 kcal/mol. 

The Gibbs free energy of formation for an RNA 
structure (AGO) quantifies the equilibrium stability of 

FIGURE 6.3 Prediction of conformational 
free energy for a conformation of 
rCCUUGAGGAACACCAAAGGGG. Each 
contributing free energy increment is labeled. 
The total free energy is the sum of each 
increment. 

Random Coil ,- Conformation A 
(unstructured) 

B. @ Conforjtnion A 

Random Coil 
(unstructured) K'eq 

Conformation B 

FIGURE 6.4 Equilibria of structures in solution. 
(a) The equilibrium between c6nformation A and the 
random coil structure. Keq, related to the AG;,, 
describes the equilibrium. (b) The equilibrium between 
two conformations, A and 6, and the random coil. K:,, 
which is related to the free energy of folding for both A 
and 6, describes the population of conformation A 
versus conformation 6. 

that structure at a specific temperature. For example, 
consider the RNA structure A at equilibrium with the 
random-coil (i.e., unstructured) conformation. The rel- 
ative concentration of each conformation is governed 
by the equilibrium constant, Keq, as illustrated in Fig- 
ure 6.4a. Keq is related to Gibbs free energy by the rela- 
tionship shown in Equation 6.1: 

[Conformation A] - e-AGoIRT 
Keq = - 

[Random Coil] 
(6.1) 

where R is the universal gas constant and T is the abso- 
lute temperature. For the example in Figure 6.3, with a 
predicted stability of -5.1 kcal/mol, there is a popula- 
tion of 3900 folded s t k n d p  every unfol 
3900). - 

Furthermore, for multiple alternative conformations 
A and B for which there is an equilibrium distribution of 
conformations, K&, as shown in Figure 6.4b, describes 
the distribution of strands betkeen the structures. In 
this case, the free energy of each conformation relative 
to random coil also describes the population of each 
conformation, as shown in Equation 6.2: 

[Conformation A1 e-cAG;-hG;)IRT KLq = - - . (6.2) 
[Conformation B] 

This generalizes to any number of conformations. There- 
fore, the lowest free energy conformation is the most 
probable conformation for an RNA at equilibrium. 

The nearest-neighbor free energy parameters* use 
sequencedependent terms for predicting the free 
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energy increments of loop regions (Mathews et al., 
1999b) to reflect experimental observations. For exam- 
ple, a symmetric 2 x 2 internal loop can vary in stability 
from -2.6 to +2.8 kcal/mol, depending on the sequence 
of the closing pair and mismatches (Schroeder et al., 
1999), corresponding to a Keq of 6.4 x lo3. 

I O Y  N A M I C  P R O G R A M M I N G  
In the last section, the concept that the lowest free en- 
ergy structure is the most likely structure for an RNA se- 
quence at equilibrium was introduced. Given that there 
are nearest-neighbor parameters for predicting the free 
energy of a given sequence and structure, how, then, is 
the secondary structure predicted? The naive approach 
would be to generate each possible conformation ex- 
plicitly, to evaluate the free energy of each conforma- 
tion, and then to choose the conformation that had the 
lowest free energy. 

One estimate is that there are (1 .8)N secondary struc- 
tures possible for a sequence of N nucleotides (Zuker & 
Sankoff, 1984). This translates to 3 x loz5 structures for 
a modest length sequence of 100 nucleotides. Given that 
a fast computer can calculate the free energy for 10,000 
structures in a second, this approach would still require 
1.6 x 1014 CPU years! Clearly, a faster solution is needed 
for this problem. 

The most commonly used solution for computation- 
ally intensive problems such as this is dynamic program- 
ming, which uses recursion to speed the calculation 

=ye. 4%- r. %, \ %  . 
m ~ l ~ o r i t h m  Complexity 

Algorithm complexity describes the scaling of a calcula- 
tion in the worst-case scenario. It  is expressed using the 
"Big-0" notation, which can read as "order." Algorithms 
that are O(N) in time require a linear increase in time as 
the size parameter, N ,  lengthens. O(N2) and O(N3) algo- 
rithms scale by the square and cube of the parameter N. 
Therefore, the dynamic programming algorithm for RNA 
secondary structure prediction, which is O(N3), where N 
is the number of nucleotides, requires roughly eight times 
the execution time for a sequence twice as long. This is 
a fairly expensive calculation as compared to sorting a 
list, which can generally be accomplished in O(N log(N)) 
time. 

The Big-0 notation also applies to the scaling of mem- 
ory (also called storage) uied by an algorithm. Secondary 
structure prediction requires two-dimensional arrays of 
size N x N. Therefore, in storage, the secondary struc- 
ture prediction algorithm is 0 (N2). 

i 

C - G  

i' j' 

FIGURE 6.5 A simple RNA pseudoknot. 
This figure illustrates two representations 
of the same simple, H-type pseudoknot. A 
pseudoknot is defined by two base pairs 

enclosed region. The base pair i' and j' 
spans the enclosed region and an adjacent 
region, making the pseudoknot. 

Wussinov & Jacobson, 1980; Zuker & Stiegler, 1981). Ap- 
pendix 6.1 describes this method in detail for the inter- 
ested reader. Modern implementations (Mathews et al., 
199913; Wuchty et al., 1999) of the dynamic program- 
ming algorithm for RNA secondary structure prediction 
also predict structures with free energy greater than the 
lowest free energy structure. These are called- 
ma1 structures (Zuker, 1989). - 

The dynamic programming algorithm for s e c o n d a a  
structure prediction is O(N3) in time and O(N2) in s t o d  
age when pseudoknots are excluded from the calcu- 
lation (see Box 6.1). A p s e u d o b t ,  illustrated in Fig- 
ure 6.5, occurs when there are nonnested base pairs. 
For example, the simplest pseudoknot occurs for which 
there are two base pairs i-j and if-j' such that i < i' < 
j < j'. It had been assumed that pseudoknots could not 
be predicted by a polynomial time dynamic program- 
ming until Rivas and Eddy (1999) presented a polynomial 
time dynamic programming algorithm that can predict 
structures containing a certain class of pseudoknots that 
is sufficiently rich to cover all cases of practical impor- 
tance. Their algorithm, however, is 0(N6) in time 
0(N4) in storage, making the calculation impractical for 
sequences longer than approximately 300 nucleotide 

I A C C U R A C Y  O F  R N A  S E C O N D A R Y  
S T R U C T U R E  P R E D I C T I O N  

The accuracy of RNA secondary structure can be as- 
sessed by predicting structures for RNA sequences with 
known secondary structures, as determined by compar- 
ative sequence analysis. For a collection of structures 
assembled to test the accuracy of prediction, which 
included small subunit rRNA (Cannone et al., 2002), 
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large subunit rRNA (Cannone et al., 2002), 5s rRNA 
( Szyrnanski et al., 2000), group I introns (Cannone et al., 
2002), group I1 introns (Michel et al., 1989), RNase P 
RVA (Brown, 1999), SRP RNA (Larsen et al., 1998), and 
tRVA (Sprinzl et al., 1998), 73% of base pairs in the 
hown structure can, on average, be correctly predicted 
( Mathews et al., 1999a). For these calculations, the small 
and large subunit rRNA are divided into domains of fewer 
than 700 nucleotides, based on the known structure 
(Mathews et al., 1999b). 

It has been demonstrated that the prediction accu- 
racy can be improved by constraining secondary struc- 
ture prediction with enzymatic constraints. Enzymesxe 
used to determine nucleotides that are single or+- 
'ble stranded (KnapD. 1989L For the 5S rKNA sequence 
Trom Escherichia coli, which is poorly predicted without 
experimental constraints, the accuracy improves from 
16% to 87% when enzymatic cleavage data are included 
(Mathews et al., 1999b; Speek & Lind, 1982; Szyrnanski 
et al., 2000). 

I P R O G R A M S  A V A l l A N l E  F O R  R N A  
S E C O N D A R Y  S T R U C T U R E  P R E D I C T I O N  
OF A S l N G l E  S E O U E N C E  

.Ilfold is an RNA secondary structure prediction package 
available through a Web frontend and as code for com- 
pilation on Unix and Linux machines (Mathews et al., 
1999b; Zuker, 2003). It uses the current set of nearest 
neighbor parameters for free energies at 37°C (Mathews 
et al., 1999b). Minimum free energy and suboptimal sec- 
ondary structures, sampled heuristically (Zuker, 1989), 
are predicted. Predicted suboptimal structures represent 
alternative structures to the lowest free energy structure 
and reflect both the possibility that an RNA se- 

2 

may have m o r e e  (Schultes & Bartel, 
1000) and the fact that the energy rules contain some un- 
certainty (Mathews et al., 1999b). Mfold also predicts en- 
ergy dot plots, which display the lowest free energy con- 
formation possible for each possible base pair (Zuker & 
Tacobson, 1995). These plots conveniently demonstrate 
,111 possible base pairs within a user-specified increment 
of the lowest free energy structure, and predicted struc- 
rures can be colo 
rhe structure for 
I Zuker & Jacobsan, 1998). 

Figure 6.6 shows the input form for the mfold RNA 
-erver. A separate server for secondary structure predic- 
tion of DNA, using DNA folding free energies (SantaLu- 
cia. 1998), is available by following the link to the DNA 
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mfold server. A sequence name can be entered in the 
box labeled Enter a name foryour sequence and the se- 
quence is typed (or pasted from the clipboard) in the 
box labeled Enter the Sequence to be folded in the box. 
As the caption explains, blanks and nonalphabetic char- 
acters are ignored and do not interfere with sequence 
interpretation. For example, the form shows the tRNA 
sequence (Sprinzl et al., 1998), RD1140, pasted into the 
sequence field. The remainder of the form has default 
values that can be changed by advanced users. The next 
box provides the option of constraining structure pre- 
diction with auxiliary evidence derived from enzymatic 
cleavage @napp, 1989), comparative sequence analy- 
sis (Pace et al., 1999), or intuition. Next, the default is 
for linear RNA sequence folding, although circular se- 
quences also can be folded by changing the option from 
linear to circular. Note that the folding tempera- 
ture is &ecla-C using the current parameters. An 
older, less complete set of parameters allows secondary 
structure prediction at other temperatures (Jaeger et al., 
1989), but it is recommended that the current param- 
eters be used for most applications. The older param- 
eters can be used for folding by following the link at 
the top of the page to RNA mfold version 2.3 server 
(not shown in Figure 6.6). The percent suboptimality 
number, 5 by default, is the maximum percent differ- 
ence in free energy from the lowest free energy struc- I 

ture that is allowed when generating suboptimal sec- 
ondary structures. The upper bound on the computed 
foldings (default = 50) is the maximum number of sub- 
optimal secondary structures to be predicted. The win- 
dow parameter controls how different each suboptimal 
structure must be from all others. It defaults to a value 
based on the length of the sequence that is shown by 
following the link at Window. For example, the tRNA 
used here is 77 nucleotides long and will have a default 
window of 2. A smaller window allows for more subop 
timal structures and a larger window yields greater dif- 
ferences between the predicted structures. The small- 
est window size allowed is zero. The maximum num- 
ber of unpaired nucleotides in bulge or internal loops 
is limited to 30, by default. The maximum asymmetry 
in internal loops (the difference in length in unpaired 
nucleotides on each strand) is also 30 by default. The 
maximum distance allowed between paired nucleotides 
defaults to no 1 imi t. These values can be modified, as 
appropriate. 

The remaining options control the server output. Cur- 
rently, sequences of 800 or fewer nucleotides can be 
folded and the results returned as an "immediate job.'' 
Longer sequences must be folded as a batch job, requir- 
ing that the default option be changed from An im- 
mediate to A batch job. Batch jobs also require that 
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I F~le Edlt Vlew Favorites Tools Help 

la, , @ Internet " < ... 

FIGURE 6.6 The input form for the version 3.1 mfold server. (a and b) The top and the bottom of 
the form, respectively. Default parameters are shown, with the exceptions noted in the text. 

the user enter an E-mail address for receiving notifica- regions in the predicted structure that having alterna- 
tion that the calculation is complete. The tRNA in this tive low energy base pairs to those in the minimum free 
example is short, so the default of An i m m e d i a t e  job energy structure. By default, color annotation is not in- 
will be used. The remaining options control the way the cluded. The button labeled Fold RNA is clicked to start 
server generates output. Each of these options has link the calculation. 
to a Web page that describes each parameter. For this ex- Figure 6.7 shows the mfold server output form for 
ample, color annotation by p-num is turned on to show the secondary structure prediction of the RD1140 tRNA. 
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FIGURE 6.6 Continued 

Results are available on the server for 24 hours after 
the job has been completed. The first window displays 
the sequence with nucleotide number. The energy dot 
plot is available by links to a text-formatted, PostScript- 
formatted, png-formatted, or jpg-formatted file. The text 
format is suitable for analysis in other software programs. 
Postscript is a publicationquality output and is shown 
in Figure 6.8b. Png and jpg both link to interactive pages 
that allow the user to zoom to regions, change the energy 
increment and number of colors, and click on individual 
base pairs to determine the exact energy. An RNAML- 
formatted output file is available for exchanging informa- 
tion with other RNAML-compliant programs. This is an 
-unl file format that promises eventually to allow seam- 
less information exchange between RNA analysis pro- 
yams (Waugh et al., 2002). A diagram of each predicted 
wcondary structure is available in a variety of formats. 
For this example, only a single structure is predicted 

using the default parameters for suboptimal secondary 
structure prediction. The commonly used formats, avail- 
able by links adjacent to Structure 1, are Postscript, 
which is a publicationquality output format shown in 
Figure 6.8A; png and jpg, which are image formats that 
allow user interaction; and RNAViz CT and XRNAss for- 
mats, which are export formats for secondary structure 
drawing tools, explained below. 

Figure 6.8 demonstrates sample output for the mfold 
server using the tRNA sequence for RD1140 (Sprinzl 
et al., 1998). The predicted secondary structure (Fig- 
ure 6.8a) is color annotated according to the number of 
competing pairs in the energy dot plot (Figure 6.8b). Nu- 
cleotides outlined i n a a r e  in well-defined regions with 
no competing base pairs. The stem with black outlined 
pairs is less well-defined than the other stems, accord- 
ing to the dot plot. In the dot plot, each dot represents 
a base pair between nucleotides indicated on the x-axis 
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FIGURE 6.7 The output page for the mfold server. See main text for details. 

and y-axis, and its color indicates the best energy for a 
structure that contains that pair. The energy dot plot is di- 
vided into two triangles. The upper triangle is the energy 
plot including suboptimal pairs and the lower triangle 
is the location of base pairs in the predicted minimum 
free energy structure. The energy dot plot in Figure 6.8 
shows that there are alternative base pairs contained in 
structures with free energies between -29.7 and -30.1 
kcal/mol, a separation of less than 0.5 kcaVmol from the 
lowest free energy structure. 

Vienna RNA Package 

The Vienna RNA Package can be used to predict RNA 
secondary structures via either a Web interface or by 
compilation onto Unix and Linux machines (Hofacker, 
2003; Hofacker et al., 1994). It uses a dynamic program- 
ming approach and the current set of thermodynamic 
parameters mathews et al., 1999b). The Vienna Package 
also implements an algorithm that calculates the parti- 
tion function for RNA folding, which predicts the base 
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FIGURE 6.8 Sample output from the mfold Web sewer, version 3.1. 
(a) The secondary structure predicted for the tRNA, RD 1 140 (Sprinzl 
et al., 1998). (b) Color annotation based on the energy dot plot. 
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Vienna RNA Secondary Structure Prediction 

A web interface to the RNAfold programm 

This senrerdpredict secondaty shctures of single strandedRNA orDNA sequences. Ifthe options look confusingmadthe hebraee 

based on ViennaRNA-1.5 
Try the new SVGplot if your browser supports it! 
You cannow submit sequences up to 4000 as batchjobs. 

Type in your sequence Ts will be automatically replaced by Us. Any symbols except AUCGTXRI will be interpreted as nonbonding bases. Any non- 

- 
UUAUCGCGCCUCCCUGUCAC 

GUCCCGUUGGGGUCGCCA 

Maximum sequence length for immediate jobs is 300. Sequences up to 4000 ( d e  only) or3000 @airprobabilities) d be queued as batch jobs 

Optlorn C tk. 6bld dgodihm 

Rsscde energypsrameters to temperature 0 
O n o  special tetraloops 

no dangling end energies 
q no GU pairs at the end of helices 

avoidisolatedbase pairs 

Should we pmduce r mu11tPtnplot of the struetun? rn plot 
View a plot of the d e  sttucture inline using anSVG image (may requke plugin) SVG 
orueingthe SStructView java applet? q SSview 

h a i l  address. For batchjobs (over30U) this is mandatory, so we can notify youwhen the job has completed. lyou@where.org 

FIGURE 6.9 Vienna Server input form. A discussion of the available options can be found in the main text. 

pairing probability for each possible base pair in a se- 
quence. The partition function prediction algorithm, 
first implemented by McCaskill(1990), is also a dynamic 
programming algorithm. The calculated base pair prob- 
abilities are commonly displayed in a probability dot 
plot, analogous to the energy dot plots from mfold. 
Additionally, the Vienna Package includes software for 
the generation of all suboptimal secondary structures 
within a given energy increment of the lowest free en- 
ergy structure (Wuchty et al., 1999). The number of sec- 
ondary structures grows expo~lentially with increasing 
size of the energy increment. 

Figure 6.9 shows the input form for the Vienna Pack- 
age Web server. The link to the helppage can be followed 
for an explanation of the fields. The sequence is typed or 
pasted from the clipboard in the box below Type your 
sequence. The tRNA sequence, RD 1 140 (Sprinzl et al., 
1998), is shown in the sequence box. Nonalphabetic 
characters are ignored automatically by the server. The 
default fold algorithm is partition function and pair 
probabilities, although the partition function calculation 
can be turned off by changing to minimum free energy 
only. The parameter set is chosen on this form as ei- 
ther use RNA parameters, old RNA parameters, or use 
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FIGURE 6.10 Sample output from the Vienna Package Web 
server, version 1.5. (a) The predicted minimum free energy 
secondary structure for the tRNA RD 1 140 (Sprinzl et al., 
1998). (b) The probability dot plot for the same sequence. 
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DNA parameters. The old RNA parameters are available 
(Walter et al., 1994) also, so that previous predictions 
can be reproduced. The temperature of folding can be 
changed from the default of 37"C, but for similar tem- 
peratures it is recommended that the default be used. 
Folding at temperatures other than 37°C use an older set 
of thermodynamic parameters (Jaeger et al., 1989) that 
are based on fewer experiments than the current set of 
parameters (Mathews et al., 1999b). The next parame- 
ters, no special tetraloops, no dangling end energies, 
no GUpairs at the ends of helices, and avoid isolated 
b&e pairs, modify the energy rules. The default is to 
check avoid isolatedpairs, and this will reproduce the 
behavior of the mfold server. The other choices can be 
modified by advanced users. The checkboxes at the bot- 
tom of the form (plot, SVG, and SSView) control the out- 
put formats. The default options, shown in Figure 6.9, 
are suitable for most users. Finally, for batch folding (re- 
quired for sequences longer than 300 nucleotides) the 
user must enter an E-mail address to receive notification 
that the calculation is complete. For shorter sequences, 
an immediate job can be performed without providing 
an E-mail address. The calculation is started by clicking 
Fold it. 

Figure 6.10 demonstrates the output of the Vienna 
Package Web server, based on the input shown in Fig- 
ure 6.9. The probability dot plot (Figure 6.lOb) is ob- 
tained by following the l i i  to Postscript dotplot on the 
output form. The Adobe SVG Viewer, downloaded for 
free by following the link on the Vienna Package Web 
server output form, is required to view the predicted 
structures. Note that the predicted secondary structure 
(Figure 6.10a) of the RD1140 tRNA sequence (Sprinzl 
et al., 1998) is identical to that predicted by the mfold 
server (Figure 6.8a). The structure is drawn counter- 
clockwise, with the ends of the sequence at the top 
of the figure, whereas the mfold server draws the struc- 
ture clockwise, with the ends at the bottom, but the 
predicted base pairs are identical. The probability dot 
plot (Figure 6.lOb) shows the predicted minimum free 
energy structure base pairs in the lower triangle. In the 
upper triangle, the area of a square dot is proportional to 
the probability of the corresponding base pair, indicated 
by the nucleotides on the x- and y-axes. The probability 
dot plot for this sequence also indicates pairs of lower 
probability competing with those in the stem starting 
with the pair of nucleotides 28 and 44. 

RNAstructure 

RNAstructure is a secondary structure prediction dy- 
namic programming algorithm for the Microsoft Win- 
dows (Redmond, WA) environment that uses the current 
set of thermodynamic parameters for RNA secondary 

structure prediction (Mathews et al., 1999b). Detailed in- 
structions for predicting a secondary structure are avail- 
able in the online help file and elsewhere (Mathews et al., 
2000). OligoWalk (Mathews et al., 1999a) is a compo- 
nent of RNAstructure that uses secondary structure pre- 
diction to predict equilibrium binding affinities of com- 
plementary DNA or RNA oligonucleotides to an RNA 
target. OligoWalk considers all N - L + 1 fully com- 
plementary oligonucleotides of length L to a target of 
length N. The equilibrium shown in Figure 6.1 1 is con- 
sidered by these programs in which a complementary 
oligomer pairs to the target, but self-structure in both the 
oligomer and target can reduce the free energy of bind- 
ing. Oligomers can be either RNA or DNA, where the 
thermodynamic parameters for DNA oligomers are de- 
rived from nearest neighbors for DNA-DNA (SantaLucia, 
1998) and DNA-RNA (Sugirnoto et al., 1995) base pair- 
ing. Predicted free energy parameters for oligomer-target 
binding correlate with cell-based measures of antisense 
efficacy (Mathews et al., 1999a; Matveeva et al., 2003). 
It is likely that this equilibrium also will be important for 
the design of sequences for RNAi. 

Figure 6.12 is a screen shot of the RNAstructure pre- 
dicted -mum free energy structure for the tRNA se- 
quence RD1140 (Sprinzl et al., 1998), using the default 
suboptimal structure parameters. This structure is equiv- 
alent to that predicted using the programs discussed ear- 
lier (Figures 6.8 and 6.10). Figure 6.13 shows a screen 
shot of the OligoWalk input form for predicting the affin- 
ity of complementary oligonucleotides to this sequence. 
The user clicks the button labeled CT File to choose 
the fde that contains the predicted structure of the tar- 
get. A default output file name, called a report file, is 
then generated, but the file name can be changed by 
clicking the Report File button. One of three modes is 

(Unimolecular Oligomer Structure) 

I I 
I I/ 

(RNA Target) + (Oligomer) (Oligomer-Target Complex) 

(Structured Target) (Oligomer), 

FIGURE 6.1 1 The equilibrium used by OligoWalk 
for predicting the affinity of an oligomer to an RNA 
target. The oligomer binds by Watson-Crick base 
pairing to the RNA target to form the 
oligome~target complex. Competing with this 
basepairing are unimolecular self-structure in the 
target, unimolecular self-structure in the oligomer, 
and bimolecular oligomer self-structure (Mathews 
et al., 1999a). 
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FIGURE 6.12 Screen shot of secondary structure 
prediction by RNAstructure, version 3.7 1. This is the 
predicted minimum free energy structure for the 
tRNA sequence RD 1 140 (Sprinzl et al., 1998). 

chosen (Mathews et al., 1999a). The Break Local Struc- 
ture mode assumes that the base pairs in the target do 
not reequilibrate after the oligonucleotide binds and are 
a suitable default. The user chooses whether to Include 

Target Suboptimal Target Structures in the calculation. 
For the short tRNA target here, not including subopti- 
mal target structures is suitable. For long targets with 
a large number of suboptimal structures within a small 
energy increment from the lowest free energy structure, 
including suboptimal target structures is preferred be- 
cause this can help overcome some of the drawbacks 
of limited prediction accuracy. The user then needs to 
choose the length of the oligonucleotides, whether the 
oligomers are DNA or RNA, and the concentration of 
the oligonucleotides. The default is to look at all com- 
plementary oligonucleotides from the first to the last nu- 
cleotide. This default can be changes by modrfying the 
S t a r t  and S top  locations. The calculation is started by 
clicking Start Oligo Walk. 

Figure 6.14 shows the output of this calculation in 
the graphical user interface. The target sequence, the 
tRNA RD1140, is displayed from 5' to 3' horizontally 
along the center of the window with nucleotides pre- 
dicted to be base paired in the lowest free energy struc- 
ture in red. The current oligonucleotide, selectable by 
the user with the right and left arrow keys or by click- 
ing the < or > buttons, is displayed above from 3' to 
5'. The Go.. . button can be used to jump to a spe- 
cific oligonucleotide or to jump to the highest affinity 
oligonucleotide. The oligonucleotide predicted to have 
the highest affinity, at a AG;,,, of -5.7 kcal/mol, is 
shown on the current display. At the top of the display is 
cost for opening base pairs in the target (-0.8 kcal/mol), 
the cost for opening the oligonucleotide birnolecu- 
lar self structure (-0.6 kcal/mol), and the cost for 

OW Wak 

FIGURE 6.13 The input window for an OligoWalk 
run. The input options are discussed in the main text. 

Sfold is an implementation of the partition function 
calculation that predicts secondary structures using a 
stochastic sampling procedure (Ding & Lawrence, 2001; 
Ding & Lawrence, 1999; Ding & Lawrence, 2003). The 
sampling procedure guarantees that structures are sam- 
pled with true statistical weight. Sfold is available for use 
through a Web interface. 

Sfold has been shown to predict unpaired regions 
that correlate to regions accessible to antisense oligonu- 
cleotide targeting (Ding &Lawrence, 2001). Because the 
secondary structures are sampled statistically, the frac- 
tion of occurrences that a nucleotide is unpaired in a 
set of sampled structures is the predicted probability for 
being unpaired. 

Figure 6.15 contains sample output from the Sfold 
Web server for the tRNA sequence RD1140 (Sprinzl et al., 
1998). Figure 6.15a shows the predicted most-probable 
structure, which is the same lowest free energy structure 
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1 l3 Duplex AG;; = -6.6 oligo-self AG,", = 0. 
Trn = 28.2 oligo-oligo AG,"7 = -0.6 

FIGURE 6.14 A screen shot of OligoWalk from RNAstructure, version 3.7 1. This screen shot shows the 
affinity predictions of 8-mer DNA oligomers to the target RNA sequence. 

predicted by the other programs previously discussed. 
Figure 6.15b shows the probability of pairing, analogous 
to the probability dot plot produced by the Vienna Pack- 
age. The areas of the dots correspond to base pairing 
probability of the nucleotides from the x-axis and y-axis. 
Figure 6 . 1 5 ~  shows the probability profile for the se- 
quence, showing the probability that a single nucleotide 
in the RNA is unpaired. Nucleotides that have low proba- 
bility of being base paired are more suitable targets from 
a thermodynamic perspective. 

I C O M P f l R I S O N  O F  D Y  N f l M l C  P R O G R A M M I N G  
S E C O N D A R Y  S T R U C T U R E  M E T H O D S  

The software packages listed here (mfold, the Vienna 
Package, RNAstructure, and Sfold) each predict sec- 
ondary structures and alternative secondary structures, 
and each uses the current set of free energy parameters 
assembled by Turner et al. (Mathews et al., 1999b). 
Mfold, the Vieha Package, and PFold are 
able through Web interfaces. Additionally, mfold and the 
Vienna Package are available for compilation on Unix and 

Linux machines. RNAstructure, however, is a Microsoft 
Windows program for installation on personal desktop 
computers. Each package has its own unique features, 
as described above. 

For the example used here, the tRNA sequence of 
RD1140 (Sprinzl et al., 1998), all of the software pack- 
ages predicted the same secondary structure. Although 
all packages are based on the same set of thermody- 
namic parameters, in general, they do not guarantee 
identical results. Each program uses a slightly different 
method for calculating thejree energy of multibranch 
loops. The partition function in the Vienna Package as- 
sumes 3' and 5' dangling ends at the end of each helix. 
SFold explicitly checks for 3' and 5' dangling ends at 
the end of each helix, but assumes that a nucleotide 
will stack preferentially as a 3' dangling end if both pos- 
sibilities exist. Mfold and RNAstructure explicitly find 
the optimal stacking of 3' dangling ends, 5' dangling 
ends, or both at the end of each helix in a multibranch 
loop. Coaxial stacking, the end-to-end stacking of two 
helices, is included in a second-step calculation that re- 
calculates the free energy of predicted structures, called 
efn2. RNAstructure and Mfold differ slightly in the use of 
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FIGURE 6.15 Sample output from the SFold server. (a) The most probable secondary structure for the RD 1 140 tRNA 
sequence. (b) The probability of pairing for all possible pairs with the largest dots indicating the most probable pairs. 
(c) The probability profile for a nucleotide being single stranded. 

efn2, creating subtle differences in the predicted struc- secondary s t a u r e s  within a small energy increment of , 
t ures. Finally, the free energy minimization algorithm the predicted minimum -e energy structuE (etY 
from the Vienna Package, RNAfold, explicitly can include al., 1999), these subtle differences can result in 
the terminal stacking calculations and a subset of the ~ f e n n g  structure predic- 
known coaxial stacking interactions in the dynamic pro- tions are more likely the longer the sequence being 
.gamrning algorithm. The partition function calculations studied. No systematic studies have been carried out to 
use the simplified energy rules because of increased examine how crucial each of these terms for multibranch 
computational overhead as compared with free en- loop stability is for the accuracy of secondary structure 
ergy minimization programs. Given that there ar- prediction. 
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l G E N E T I C  A l G O R l T H M  FOR R N A  S E C O N D A R Y  
S T R U C T U R E  P R E D I C T I O N  

Other computational methods have been explored for 
RNA secondary structure prediction. For example, a ge- 
netic algorithm, which uses random mutations of struc- 
ture and selection of the most fit solutions, is available in 
STAR (Gultyaev et al., 1995; Van Batenburg et al., 1995). 
This algorithm determines fitness based on conforma- 
tional free energy mathews et al., 1999b). The algorithm 
is executed with the sequence lengthening from 5' to 3' 
end to simulate a pathway of RNA folding. Also, because 
the algorithm is not based in dynamic programming, it is 
capable of including pseudoknots explicitly in a compu- 
tationally reasonable time. However, the drawbacks to 
simulations like genetic algorithms are that they do not 
guarantee the optimal solution and that they can provide 
different results with repeated calculations on the same 
sequence. 

l P R E D I C T I N G  T H E  S E C O N D R R Y  S T R U C T U R E  
C O M M O N  TO M U l T l P l E  R I A  S E O U E N C E S  

The basis of comparative sequence analysis is the detec- 
tion of conserved structure, as inferred from sequence 
differences between species or between sequences dis- 
covered by in vitro evolution (Pace et al., 1999). The 
assumption of a conserved secondary structure elimi- 
nates from consideration the many possible secondary 
structures for a single sequence that the ensemble of se- 
quences together cannot adopt. That is, taken together, 
the multiple sequences constrain the possible secondary 
structure. These constraints can also be used as auxiliary 
information in the prediction of secondary structure. 

RNA secondary structure prediction algorithms that 
incorporate information from multiple sequences can be 
divided between those that are constrained by an initial 
sequence alignment and those that are not. In general, 
those methods that are constrained by an initial align- 
ment are not as robust because of the limitations in the 
alignment, but they are computationally faster. 

Algorithms That Are Constrained by an 
Initial Alignment 

Several programs have been developed for finding the 
secondary structure common to a set of aligned se- 
quences (Hofacker et al., 2002; Juan & Wilson, 1999; 
Luck et al., 1999; Luck et al., 1996). One approach, 
called Construct, uses base pairing probabilities deter- 
mined by a partition function calculation for each se- 
quence (Luck et al., 1996). These probabilities are then 
summed according to the alignment to give a consen- 

sus probability matrix. The limitations imposed by the 
sequence alignment are addressed through a user inter- 
face in which users can interactively adjust the alignment 
to improve the consensus probability (Luck et al., 1999; 
Luck et al., 1996). The source code for ConStruct can be 
downloaded for compilation. 

A second program, called alifold, uses a sequence 
alignment to constrain secondary structure prediction 
by free energy minimization or to constrain the calcu- 
lation of the partition function (Hofacker et al., 2002). 
Additional energy terms are added to the conformational 
free energy to favor compensating base changes and se- 
quence conservation. This program is available as part 
of the Vienna Package and through a Web server. Fig- 
ure 6.16 shows the output for an alifold run for three 
tRNA sequences; Figure 6.l6a shows the consensus sec- 
ondary structure; and Figure 6.l6b shows the probabil- 
ity dot plot. Note that, by including three sequences, the 
lower-probability base pairs that had competed with one 
of the stems (e.g., Figure 6.1 lb) are no longer possible. 

A third program for finding a structure common 
to multiple sequences, called Pfold, uses a stochastic 
context-free grammar (Knudsen & Hein, 1999). The 
grammar defines rules for emitting a random sequence 
together with a secondary structure. These rules, en- 
coded as probability parameters, are estimated from a 
sequence alignment and known, common secondary 
structures of a number of tRNAs and large ribosomal 
subunit (LSU) rRNAs. These sequences and structures 
are referred to as the training set. A given sequence 
is folded using a dynamic programming algorithm that 
determines a structure with a maximum probability of 
being emitted by the stochastic context-free grammar. 
Pfold is available through a Web interface, and sample 
output for three tRNA sequences is shown in Figure 6.17. 
The same consensus structure is found as with the alifold 
server (Figure 6.16). 

Algorithms That Are Not Constrained 
by the Initial Alignment 

A genetic algorithm has been developed for finding an 
alignment and common secondary structure for multiple 
sequences (Chen et al., 2000). This program makes ran- 
dom mutations on S sequences to make a set of m struc- 
tures. Alternately, the free energy of conformations and 
the similarity of conformations are used as fitness criteria 
for selecting structures for future rounds of mutation and 
selection. Overall, the algorithm scales as o ( ~ ~ & s ~ ) ,  
where n is the maximum number of stems allowed in a 
structure. The authors looked at test cases drawn from 
tRNA, 5S rRNA, and rev response elements of human 
immunodeficiency virus 0 and simian immunodefi- 
ciency virus (SIV) (Chen et al., 2000). 
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Common ( ( ( ( ( ( ( . . (  ( ( (  . . . . . . .  . . ) ) ) ) . ( ( (  ( (  . . . . . . .  
RD0260 GCGACCGGGG CUGGCUUGGU AAUGGUACUC CCCUGUCACG 
RD0260 ( ( ( ( ( ( ( . . (  ( ( (  . . . . . . .  . . ) ) ) ) . ( ( (  ( (  . . . . . . .  
RD1140 GGCCCCAUAG CGAAGUUGGU UAUCGCGCCU CCCUGUCACG 
RD1140 ( ( ( ( ( ( ( . . (  ( ( (  . . . . . . .  . . ) ) ) ) . ( ( (  ( (  . . . . . . .  
RD2640 GGGAUUGUAG UUCAAUUGGU CAGAGCACCG CCCUGUCAAG 
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RD0260 GGAGAGAAUG UGGGUUCAAA UCCCAUCGGU CGCGCCA 
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RD1140 GAGGAGAUCA CGGGUUCGAG UCCCGUUGGG GUCGCCA 
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FIGURE 6.17 Sample output from the Pfold server. The structures of the 
three tRNA sequences are shown with bracket notation above each sequence. 
The parentheses indicate paired nucleotides and the direction of pairing. Every 
nucleotide with a "(" above is base paired to a downstream nucleotide with a 
")" above. The structure predicted for the first sequence, RD0260, is identical 
to the structure predicted by other methods (e.g., Figure 6.10). Note that base 
pairing confidences are reported under the structures for each homologous 
base pair. The input alignment was taken from the Sprinzl database (Sprinzl 
et al., 1998). 

Dynamic programming can be used to predict simulta- 
neously the sequence alignment and common secondary 
structure for multiple sequences (Sankoff, 1985). In gen- 
eral, this approach is O(N: N: N: . . .  ) in time, where N, 
is the length of the first sequence, N2 is the length of the 
second sequences, and so on, making it computationally 
impractical. Two computer programs are available that 
use dynamic programming, limited to two sequences at 
most. The first, called FOLDALIGN, finds the local align- 
ment and common structure of two sequences, using a 
simple scoring scheme (Gorodkin et al., 1997). This scor- 
ing scheme favors base pairs, sequence conservation, 
and compensating base changes. It constructs a multi- 
ple sequence alignment from pairwise comparisons us- 
ing a method similar to that used by ClustalW for build- 
ing alignments based on sequence matching (Thompson 
et al., 1994). The algorithm is o(L*) in time, where 
L is the maximum motif size. This scaling is achieved 
by not allowing multibranch loops or pseudoknots. Be- 
cause multibranch loops are not included, FOLDALIGN 
is designed to be a screening tool for finding common 
helices, that is, a first step in comparative sequence 
analysis. 

The second dynamic programming algorithm for si- 
multaneous secondary structure and alignment predic- 
tion of two sequences is Dynalign (Mathews & Turner, -- .- 
2002). It minimizes the sum of the conformational free 

energy parameters for both sequences, using nearest- 
neighbor parameters and a term that penalizes the in- 
sertion of gaps into the sequence alignment. The gap 
insertion penalties were calibrated to folding free ener- 
gies by optimizing the accuracy of pairwise structure 
predictions for a set of 5S rRNA sequences. Because 
there are no terms in the optimization for matching 
sequence in the alignment, Dynalign does not require 
any sequence similarity in two sequences. Structural bi- 
furcations (i.e., multibranch loops) are allowed. Algo- 
rithm scaling is improved by restricting the possible se- 
quence alignments by limiting the maximum separation 
between nucleotides in the alignment with a parame- 
ter M. This results in an algorithm that is 0(N3M3) in 
time and 0(N2M2) in storage, where N is the number 
of nucleotides in the shorter sequence. Dynalign is avail- 
able as part of the RNAstructure package for Microsoft 
Windows or as C++ code for local compilation. An ap- 
plication of Dynalign is one of the worked examples at 
the end of the chapter. 

No single algorithm is yet available that can replace 
comparative sequence analysis. Each algorithm provides 
results that are useful for constructing a secondary 



structure model for multiple sequences. Dynalign can 
be helpful for aligning sequences that are too dissimi- 
lar to be aligned by primary sequence without referring 
to secondary structure (Mathews & Turner, 2002). Al- 
ternatively, FOLDALIGN can be used for sequences too 
long for Dynalign (Gorodkin et al., 1997). The meth- 
ods for finding secondary structure in multiple sequence 
alignments are best used as screening tools to find com- 
mon helices, which can be used to anchor portions of a 
sequence alignment when making revisions for further 
rounds of analysis. The Construct tool provides one such 
convenient user interface for doing the alignment revi- 
sions (Luck et al., 1999). 

l I N T E A A C T l V E l Y  D R A W I N G  R N A  
S E C O N D A R Y  S T R U C T U R E S  WP 

Software packages for secondary structure prediction 
come with programs to display predicted structures au- 
tomatically. These diagrams usually are acceptable for 
looking at results, but generally are not of high enough 
quality for publication without substantial revision. 

Three software packages are available for editing di- 
agrams of RNA secondary structures. The first, -is 
available from the ~niversit~i of California at Santa Cruz 
RNA Center. It is written in Java, and therefore should 
function on any platform that supports the current Java 
implementation. ~ i ~ u r e  6.2 was drawn interactively with 
m a  on a computer using Microsoft Windows. The sec- 
ond program, RnaViz, is available as executable pro- - 
grams for Windows and Linux (De Rijk et al., 2003). The 
third program, s,ir-graph, by D. Stewart and M. Zuker, 
is written in C and is available, together with source 
code, for Unix, Linux, Mac OS X (Darwin-Fink-XI1 and 
Darwin-Panther) and Windows (Cygwin and MingW). 

I P R E D I C T I N G  R N A  T E R T I A R Y  S T R U C T U R E  
Although there are many automated methods for accu- 
rate RNA secondary structure prediction, tertiary struc- 
ture prediction remains largely a craft that requires 
user input and insight. One reason for this has been 
the relative lack of RNA three-dimensional structures 
compared with secondary structures. Two- and three- 
dimensional nuclear magnetic resonance (NMR) meth- 
ods have provided a wealth of information on the solu- 
tion structure of small loops, but are limited to systems 
of approximately 50 nucleotides without selective nu- 
cleotide labeling. The tRNA crystal structure of yeast 
phenylalanine tRNA was solved more than 25 years ago 
(Kim et al., 1974), but few large, nonhelical crystals 

of RNA were solved subsequently, until more recent 
technological breakthroughs culminated in the publica- 
tion of high-quality crystal structures of the ribosome 
(Ban et al., 2000; Schluenzen et al., 2000; Wimberly et al., 
2000). 

Several distinct computational approaches have been 
used successfully to model RNA tertiary structures. The 
first is an extension comparative sequence analysis to 
predict sites of tertiary contacts (Massire et al., 1998; 
Michel et al., 2000). This approach has its origins 
in the work by Levitt (1969) on tRNA sequences. 
In that work, three tertiary contacts, of which two 
were proven later to be correct, were inferred from 
an alignment of tRNA sequences (Levitt, 1969; Michel 
et al., 2000). More recently, Michel and Westhof (1990) 
modeled the catalytic core of the group I self-splicing 
intron using high-quality sequence alignment of 86 
sequences with well-established secondary structure as 
the starting point. Nucleotide columns in the alignment 
not involved in canonical pairing, found to co-vary with 
statistical sigmficance, are inferred to be involved in 
tertiary contacts. With a set of tertiary contacts, a model 
of the catalytic core of the Tetrahymena sequence 
was built (Michel & Westhof, 1990). A model was also 
built of the tertdoop-tertraloop receptor motif, with 
an overall orientation that was supported by a later 
crystal structure (Pley et al., 1994). However, most 
atomic details of the interaction, such as the locations of 
hydrogen bonds, were incorrect, suggesting that such 
models are coarse grained. The Westhof group makes 
available a computer program called MANIP, for the SGI 
IRIX operating system, for user assembly of structure 
motifs into structures (Massire & Westhof, 1998). 

A second approach to tertiary structure modeling 
uses experimentally derived data to constrain model 
building with a program called MC-SYM (Major et al., 
1993; Major et al., 1991). Models are constructed au- 
tomatically by the stepwise assembly of nucleotides in 
conformations collected from known structures. Each 
possible model is stored until it is shown to contradict a 
constraint, based on experimental data or comparative 
analysis. The variations between all compatible models 
can suggest how welldetermined the model is with the 
data used. This approach has been used to construct a 
model of the hairpin ribozyme using data on secondary 
structure, hydroxyl radical footprinting, photoaffinity 
cross-linking, and disulfide cross-linking (Pinard et al., 
1999). A later crystal structure verified the existence of 
a predicted long range GC pair, although a predicted 
base triple, involving an A at that pair, was not observed 
(Rupert & Ferrk-D'Amar6, 2001). Again, this suggests 
that the model is coarse grained, that is, many gross fea- 
tures are predicted correctly, although some atomic-level 
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interactions are incorrect. MC-SYM is available for SGI 
IRM and Linux. 

A third approach is homology model building using 
a sequence alignment and a reference tertiary structure. 
Homology modeling is a commonly used method for pre- 
dicting the structure of proteins (see Chapter 9), but has 
not been a method available to the RNA community be- 
cause of the lack of large tertiary structures. With the 
publication of the crystal structure of the 30s ribosomal 
subunit (Schluenzen et al., 2000; Wimberly et al., 2000), 
a template for homology modeling of the 16s rRNA ter- 
tiary structure became available. Tung et al. (2002) con- 
structed a model of the 16s rRNA from E. coli using 
the crystal structure of the Thermus thermophilus se- 
quence as a template. For regions of the sequence align- 
ment that have no insertions or deletions, a direct substi- 
rution of the nucleotides was used. For the more variable 
q$ons, entire motifs, borrowed from other regions of 
-he template structure, were inserted into the model 
-1ructure. The model was found to correlate reasonably 
with the available cryo-EM map of the E. coli structure 
Gabashvili et al., 2000). Similarly, a homology model 
tf  the tRNA-like domain of the tmRNA was constructed 
3ing the t w h e  (Hingerty et al., 1978) and tRNAASp 
'Kesthof et al., 1988) crystal structures as a reference 
Stagg et al., 2001). 

Another method applied to RNA tertiary structure 
rnodeling is low-resolution molecular mechanics calcula- 
nons. The Harvey group has developed a reduced repre- 
entation molecular mechanics software package, called 
: anzmp, that was used to model the 16 S ribosomal RNA 
LTI the context of the small ribosomal subunit (Malhotra 
_'\: Harvey, 1994). The modeling was started with a repre- 
wntation of the RNA in which one pseudoatom was used 
5'1r each helix. A random walk was performed to provide 
1 \-ariety of starting structures, followed by simulated an- 
nealing and energy minimization. Several possible mod- 
cis were retained for further refinement, starting with 
-mulated annealing and energy minimization on a rep- 
resentation in which each helix was represented with 
~ \ - e  pseudoatoms. Finally, simulated annealing and en- 
crgy minimization was performed with each nucleotide 
represented as a single pseudoatom. Constraints, derived 
%om cross-linking and chemical modification data were 
modeled as pseduobonds between pseudoatoms. Each 
nbosomal protein in the small subunit was also consid- 
rred in the calculation as a single spherical pseudoatom 
n-ith very soft excluded volume constraints, allowing 
imited nonspherical behavior. The last step of modeling 
=-as to construct a consensus structure from the seven 
rndividual models. The regions with large structural dif- 
krences between these seven models were assumed to 
5e less well defined in the final consensus model. More 

recently, yammp was used to help model the tertiary 
structure of RNase P, constrained with cross-linking data 
(Chen et al., 1998). 

I F U T U R E  O F  T E R T I A R Y  S T R U C T U R E  
P R E D I C T I O N  

New data are becoming available with which to under- 
stand the forces that drive tertiary structure formation in 
FWA. At the coarse-grained level, recent studies catego- 
rized noncanonical pairs based on geometry, providing 
information needed for improved homology modeling 
and comparative sequence analysis modeling (Leontis 
et al., 2002). Newly solved crystal and NMR structures 
are providing atomic resolution models from which 
to study RNA structure by example (Ferre-D'Amare & 
Doudna, 1999; Major & Griffey, 2001; Moore, 2001; 
Zidek et al., 2001). Computational studies are providing 
an understanding of the interaction of RNA with metal 
ions and solvent (Auffinger et al., 2003; Auffinger & 
Westhof, 2000). New computational methods are also 
being developed that speed atomic level calculations 
and improve their accuracy (Kollman et al., 2000; Tsui 
& Case, 2001). 

l S U M M A R Y  
RNA secondary structure can be predicted by free en- 
ergy minimization using dynamic programming, with an 
average predictive accuracy of 73% for a single sequence 
(Mathews et al., 199913). Several software packages, in- 
cluding mfold and the Vienna Package, are available to 
do this calculation (Hofacker, 2003; Zuker, 2003). These 
packages include algorithms that can help in the identi- 
fication of base pairs that are not well determined. Sec- 
ondary structure prediction has been extended to pre- 
dict regions accessible to oligonucleotide binding in the 
programs OligoWalk and SFold (Ding & Lawrence, 2001; 
Mathews et al., 1999a). 

Several methods are available to constrain secondary 
structure prediction using multiple sequences. These are 
divided among algorithms that are limited to an initial se- 
quence alignment and those that are not limited to an 
initial alignment. Construct, alifold, and PFold all pre- 
dict a secondary structure common to a set of aligned 
sequences (Hofacker et al., 2002; Knudsen &Hein, 1999; 
Liick et al., 1999). Dynalign, FOLDALIGN, and a genetic 
algorithm are capable of simultaneously predicting a 
common structure and sequence alignment (Chen et al., 
2000; Gorodkin et al., 1997; Mathews & Turner, 2002). 

RNA tertiary structure prediction requires user skill 
and insight. The currently available methods build 
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FIGURE 6.18 The predicted, cololcannotated structure of the D. Sucinea R2 element using the 
rnfold server. See Worked Example for details. 
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coarse-grained structures that can provide an overall 
sense of the structure, although atomic-scale interac- 
tions can be incorrect. Many new experimental and 
computational results promise to provide insight into 
the forces that drive tertiary structure formation which 
should translate to more accurate tertiary structure 
models. 

Two worked examples are presented. The first is the prediction 
of an RNA secondary structure with color-annotation of "well- 
definedness" using the mfold server. The second example presents 
the simultaneous prediction of secondary structure and sequence 
alignment for two sequences using Dynalign. 

Mfold Server and Color Annotation 

To demonstrate the utility of color annotation on the mfold server, 
predict the secondary structure for the Drosophila sucinea R2 3' 
UTR as shown in Figure 6.2. R2 elements are a class of retro- 
transposons that are found in most arthropods (Eickbush, 2002). 

During retrotransposition, the 3' UTR of the message RNA is 
specifically recognized by the reverse transcriptase during target- 
primed reverse transcription (Luan & Eickbush, 1995; Luan et al., 
1993). The secondary structure of the 3' UTR was predicted for 
Drosophila with comparative sequence analysis of 10 sequences 
(Mathews et al., 1997). The sequence of the R2 element from D. 
sucinea, which can adopt the comparative analysis structure, was 
later determined (Lathe & Eickbush, 1997). This sequence has 
been chosen for this example because it has a known secondary 
structure and the prediction of this secondary structure by free 
energy minimization is less accurate than average, so that the use- 
fulness of color annotation is demonstrated (Zuker & Jacobson, 
1995; Zuker & Jacobson, 1998). 

Download the D. sucinea R2 3' UTR sequence from the Book's 
Web site. Access the mfold Web server and paste the sucinea 
R2 element sequence into the large field on the server Web 
site for the input sequence. Scroll to  the bottom of the Web 
page, to the section marked Choose color annotation. 
Select the button after p-num to  choose a color annotation 
that reflects how well determined base pairs are. Keep the de- 
fault settings for all other fields. Note, however, that there are 
links to  a help page with an explanation of each user definable 
setting. 

Click the Fold RNA button at the bottom of the form. This 
sequence is short enough that the default immediate job can be 
performed, so the Web browser will move quickly t o  the results 
page. The results remain available on the server for 24 hours. 
Note that the energy dot plot can be viewed by following a hyper- 
link at the top of the page. Furthermore, a zip or tar file can 
be downloaded that contains all the predicted structures. On 
the results page, view the first individual structure by clicking jpg 

under Structure 1. The jpeg format can be displayed by every 
graphical Web browser. 

Figure 6.18 shows the predicted structure for the D. sucinea 
R2 element, including the p-num color annotation. Five of the 
predicted helices are identical to  helices in the structure based 
on comparative sequence analysis (Figure 6.2). A sixth helix is 
predicted that is consistent with, but not included in, the compar- 
ative sequence analysis structure. These helices are all between 
nucleotides U88 and A207. These correctly predicted helices are 
largely composed of base pairs in which most nucleotides are 
annotated in red, indicating that there are few competing subop- 

timal pairs t o  these base pairs (Zuker &Jacobson, 1998). Most of 
the remainder of the paired nucleotides, which are not correctly 
predicted in the lowest free energy structure, are annotated in 
green, purple, and blue. These colors indicate that there are com- 
peting base pairs t o  these pairs within a small energy increment. 
The color annotation expresses a measure of confidence in the 
base pairs where, in this case, 92.3% of base pairs in which both 
nucleotides are annotated in red are correct. In total, only 54.2% 
of the predicted pairs are correct. 

Dynalign 

To demonstrate the usefulness of Dynalign, predict the secondary 
structures common to  the two tRNA sequences RD0260 and 
RD 1 140. Download and install RNAstructure on a personal com- 
puter using Microsoft Windows. (Alternatively, a text interface 
version of Dynalign can be used by downloading and compiling 
onto any Unix or  Linux machine with a C++ compiler.) Down- 

load the sequence files from the Book's Web site. The sequence 
file format used by RNAstructure is illustrated by these files. There 
must be at least one line beginning with a semicolon for comments. 
The next line must contain a title for the sequence. The following 
lines contain the sequence, ignoring white space and terminated 
with a "I I' Lower-case nucleotides are forced single stranded. 

Start RNAstructure and choose File 1 Dynalign from the 
menu. Figure 6.19 shows a screen shot of the Dynalign program. 
Click the Sequence File 1 button and select the RD0260.seq 
file with the open file dialog box. Then Click the Sequence 
File 2 button and select the RD I 140.seq file. The remainder 
of the fields will fill with default values as shown in Figure 6.19. 
The output will be saved in three files, CT File 1, CT File 2, 
and Alignment File. The ct files save the base pairing infor- 
mation and the alignment file is a plain text file with the sequence 
alignment. 

Click the start button to  begin the calculation, which will take 
approximately 6 minutes on a 3.06-GHz Pentium 4 computer. 
The program then displays the common structure for each se- 
quence in its own window. Click on the window with RD0260 
drawn, as illustrated in Figure 6.20. This structure contains all of 
the correct pairs, as determined by comparative sequence anal- 
ysis, as does the RD 1 140 structure. Without the constraints of 
a second sequence, RD0260 is a tRNA sequence with a poorly 
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FIGURE 6.19 A screen shot of the Dynalign input form 
as seen using RNAstructure on Microsoft Windows. See 
Worked Example for details. 

predicted structure. Figure 6.2 1 shows a screen shot from RNAs- 
tructure with the predicted minimum free energy structure for 
RD0260 when it is predicted alone. This example demonstrates 
[hat Dynalign can provide improved accuracy of secondary struc- 
lure prediction when a second sequence is included to  constrain 
[he possible structures. 

FIGURE 6.20 A screen shot of the RD0260 structure 
as predicted by Dynalign, in RNAstructure version 3.7 1. 
RD I 140 was used as the second sequence in the 
calculation. See Worked Example for details. 

FIGURE 6.2 1 A screen shot of the RDO26O structure 
as predicted by free energy minimization of the single 
sequence in RNAstructure. This tRNA sequence was 
chosen as an example because its secondary structure 
is poorly predicted without the constraints provided 
by a second sequence. See Worked Example for 
details. 

The Book's Web site has a set of four homologous sequences. 
Predict the secondary structure for each of the sequences using 
the same program. Determine the consensus secondary structure 
for these four sequences. 

Secondary Structure Drawing Programs 

Sirgraph http://www.bioinfo.rpi.edu/applicationslmfold/expor~ 

RnaViz http://rrna.uia.ac.belrnavizl 

XRNA http:l/rna.ucsc.edulrnacenter/xrna/~rna~intro.html 
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